University of Maryland Eastern Shore 2018 Graduate Education Week

4th Graduate Education Week and 9th Annual Regional Research Symposium Program

School of Graduate Studies

“Promoting Research through Innovation, Technology and Creativity”

April 16, 2018 — April 20, 2018
Princess Anne, Maryland
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division of Academic Affairs</td>
<td>3</td>
</tr>
<tr>
<td>Call For Abstracts</td>
<td>4</td>
</tr>
<tr>
<td>Message: Dr. Juliette Bell, President, UMES</td>
<td>5</td>
</tr>
<tr>
<td>Message: Dr. Kimberly Whitehead, Interim Provost and Vice President</td>
<td>6</td>
</tr>
<tr>
<td>Message: Dr. Lakeisha Harris, Interim Dean, School of Graduate Studies,</td>
<td>7</td>
</tr>
<tr>
<td>Sponsors</td>
<td>8</td>
</tr>
<tr>
<td>Graduate Education Activities and Lecture Schedule</td>
<td>10</td>
</tr>
<tr>
<td>Biography: Dr. Victoria Volkis, Department of Natural Sciences, UMES</td>
<td>14</td>
</tr>
<tr>
<td>Biography: Dr. Maurice Crawford, Department of Natural Sciences, UMES</td>
<td>15</td>
</tr>
<tr>
<td>Biography: Dr. Eric May, Department of Natural Sciences, UMES</td>
<td>16</td>
</tr>
<tr>
<td>Sessions Schedules</td>
<td>17</td>
</tr>
<tr>
<td>Participants and Affiliate Institutions</td>
<td>19</td>
</tr>
<tr>
<td>Participants: Creative and Monetary</td>
<td>19</td>
</tr>
<tr>
<td>Participants: Three Minute Thesis (3MT®) Competition</td>
<td>20</td>
</tr>
<tr>
<td>Participants: Poster Presentation Abstract Titles and Presenters List</td>
<td>20</td>
</tr>
<tr>
<td>Participants: Oral Presentation Abstract Titles and Presenters List</td>
<td>22</td>
</tr>
<tr>
<td>Participants: Oral Presentation Abstracts</td>
<td>24</td>
</tr>
<tr>
<td>Participants: Poster Presentation Abstracts</td>
<td>34</td>
</tr>
<tr>
<td>Graduate Council Members</td>
<td>53</td>
</tr>
<tr>
<td>Graduate Council Committees</td>
<td>54</td>
</tr>
<tr>
<td>Graduate Programs and Directors</td>
<td>55</td>
</tr>
<tr>
<td>Graduate Education Week Committees</td>
<td>56</td>
</tr>
<tr>
<td>Judges for Oral and Poster Presentations</td>
<td>59</td>
</tr>
<tr>
<td>Moderators for Oral and Poster Presentations</td>
<td>60</td>
</tr>
<tr>
<td>Notes</td>
<td>61</td>
</tr>
<tr>
<td>Conference Floor Plans</td>
<td>62</td>
</tr>
<tr>
<td>Campus Map and Information</td>
<td>66</td>
</tr>
</tbody>
</table>
Division of Academic Affairs, University of Maryland Eastern Shore

Dr. Juliette B. Bell
President

Dr. Kimberly Whitehead
Interim Provost and Vice President for Academic Affairs

Dr. Latasha Wade
Interim Vice Provost for Academic Affairs

Assistant Vice Provost for Academic Affairs

Dr. Lakeisha Harris
Interim Dean, School of Graduate Studies

Dr. Moses Kairo
Dean, School of Agricultural & Natural Sciences

Dr. Kate Brown
Acting Dean, School of Business & Technology

Dr. Chris Harrington
Dean, School of Education, Social Sciences & The Arts

Dr. Rondall E. Allen
Dean, School of Pharmacy & Health Professions

Ms. Adrienne Webber
Dean, Library Services
DIVISION of ACADEMIC AFFAIRS
School of Graduate Studies

Call for Abstracts
University of Maryland Eastern Shore
Fourth Annual Graduate Education Week
Ninth Annual Graduate School Regional Research Symposium
Student Services Building Ballroom
April 17, 2018
8:00 a.m.- 5:00 p.m.

The School of Graduate Studies at The University of Maryland Eastern Shore is pleased to announce its 4th annual Graduate Education Week and 9th Annual Regional Research Symposium to be held on Tuesday, April 17, 2018. The theme of this year’s symposium is:

“Promoting Research through Innovation, Technology, and Creativity”.

We invite edited abstracts of no more than 250 words excluding the title, authors, and affiliation. Submission guidelines are provided on the registration website at www.umes.edu/Symposium2018. Abstracts submitted in incorrect format will be rejected. The deadline for submission of abstracts is March 1, 2018.

The registration for the symposium may be completed online at www.umes.edu/Symposium/2018

This year’s symposium will highlight Graduate and Undergraduate education and include an interdisciplinary research and innovation theme. We invite proposals from all disciplines, including STEM, Social Sciences, Fine Arts, etc.

We look forward to your participation this year. If you need assistance with registration or abstract submission, please contact Mrs. Angela Young (adyoung@umes.edu)

Respectfully,

LaKeisha L. Harris, Ph.D., CRC
Interim Dean

Engineering and Aviation Sciences Complex, Suite 2041-2046, Princess Anne, MD 21853 Tel: (410)651-6507 Fax: (410)651-7571
MESSAGE FROM
DR. LAKEISHA HARRIS

INTERIM DEAN, SCHOOL OF GRADUATE STUDIES

Greetings and welcome to the 4th Annual Graduate Education Week and the 9th Annual UMES Regional Research Symposium! We are excited to host faculty, staff, and students from across the great state of Maryland who have come to UMES to participate in the presentations of faculty and students who are eager to share their research.

This year the symposium’s theme is" Advancing and Celebrating Graduate Education and Research to Promote Value to the State of Maryland and Beyond”. As you navigate the poster sessions and listen to the oral presentations, you will see that faculty and students are engaged in research studies and ideas that are consistent with this year’s theme. We are grateful to our participating researchers who are engaged in research that will surely contribute to advances in natural sciences, education, social sciences, and health professions.

These are exciting times for graduate education and research and I thank each of you for your support of our faculty and student researchers.

Enjoy the research symposium, take a tour of our spacious campus, and feel free to explore the town the Princess Anne.

We look forward to a great day of activities.
SPONSORS

Office of the President

Office of the Provost and Vice President of Academic Affairs

Institutional Advancement

Division of Student Affairs

School of Graduate Studies

School of Agricultural and Natural Sciences

School of Business and Technology

School of Education, Social Sciences and The Arts

School of Pharmacy and Health Professions

Frederick Douglas Library

Title III

Living Marine Resources Cooperative Science Center
University of Maryland Eastern Shore 2018 Graduate Education Week

School of Graduate Studies
DIVISION of ACADEMIC AFFAIRS

Regional Research Symposium 2018
Student Services Center

"**PROMOTING RESEARCH THROUGH TECHNOLOGY, INNOVATION AND CREATIVITY**"

Tuesday April 17, 2018
Student Services Center

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 a.m.</td>
<td>Registration (SSC Theater Reception Area)</td>
</tr>
<tr>
<td>8:00 a.m. - 8:30 a.m.</td>
<td>Continental Breakfast (SSC Multipurpose Room)</td>
</tr>
<tr>
<td>8:00 a.m. - 3:00 p.m.</td>
<td>Graduate Program Tables (Hallways)</td>
</tr>
<tr>
<td>8:45 a.m. - 8:50 a.m.</td>
<td>Greetings (Multipurpose Room) Dr. LaKeisha Harris, Interim Dean, School of Graduate Studies</td>
</tr>
</tbody>
</table>

CONCURRENT SESSIONS:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 a.m. - 10:30 a.m.</td>
<td>Poster Presentations (Student Services Center Ballroom)</td>
</tr>
</tbody>
</table>
| 9:00 a.m. - 10:30 a.m. | Technology and Innovation: UMES Remote Sampling Exhibit –
 | Outside: Use the SSC Theater Hallway Exit Dr. Xavier Henry |
| 9:15 a.m. to 10:15 a.m. | Monetary Presentation: Federal Reserve Challenge
 | Business Undergraduates (Multipurpose Room) Dr Monisha Das |
| 9:30 a.m. - 10:30 a.m. | Technology and Innovation: NASA Launch Photo Show
 | “Smile! – You are on the Camera. NASA Social Experienced by
 | Scientist and Photographer” (Theater) Dr. Victoria Volkis |
THREE MINUTE THESIS (3MT®)
10:45 a.m. - 11:45 a.m. Doctoral and Masters Competition (Multipurpose Room)
Judges
Dr. Kingsley Ejiogu, Department of Criminal Justice, UMES
Dr. Willie Brown, Department of Engineering, UMES
Dr. Cynthia Cravens, Department of English, UMES
Ms. Catherine Passeri, Instructional Technology, UMES

Timekeeper
Mr. Zoe Johnson, Department of Natural Sciences, UMES

Undergraduate Presentations (Multipurpose Room)
Highlights: Department of Engineering Undergraduates

LUNCHEON
12:00 noon -12:05 p.m. Greetings (Student Services Center Ballroom)
M A S T E R O F C E R E M O N I E S:
Dr. LaKeisha Harris, Interim Dean, School of Graduate Studies

12:00 noon -12:05 p.m. Greetings (Student Services Center Ballroom)
Dr. Kimberly Whitehead, Interim Provost and
Vice President for Academic Affairs, UMES

12:05 p.m. - 12:06 p.m. Invocation (Student Services Center Ballroom)
Dr. Mobolaji Okulate, Department of Natural Sciences, UMES
School of Graduate Studies
DIVISION of ACADEMIC AFFAIRS

Regional Research Symposium 2018
Student Services Center

“PROMOTING RESEARCH THROUGH TECHNOLOGY, INNOVATION AND CREATIVITY”

Tuesday, April 17, 2018

12:06 p.m. - 12:35 p.m. Lunch (Student Services Center Ballroom)

12:06 p.m. - 12:35 p.m. Musical Interlude (Student Services Center Ballroom)
Mr. Preston Gross, School of Graduate Studies

12:35 p.m. - 12:45 p.m. Introduction of Speaker (Student Services Center Ballroom)
Dr. Juliette B. Bell, President, UMES

12:45 p.m. - 1:00 p.m. Dr. Maurice Crawford, Asso Prof. Department of Natural Sciences, UMES
"Seagrass Habitat in the Maryland Coastal Bays"

1:05 p.m. - 1:20 p.m. Dr. Eric May, Asst. Prof., Department of Natural Sciences, UMES
"Fisheries in the Maryland Coastal Bays"

1:20 p.m. - 1:25 p.m. Break

CONCURRENT SESSIONS:

1:25 p.m. - 2:40 p.m. Oral Presentations Session I (Student Services Rooms
Theater, 2144, 2146, 2147, 2149)

1:25 p.m. - 2:40 p.m. Creative Endeavors:
Bridget Clinton, Human Ecology Fashion (Multipurpose Room)
School of Graduate Studies
DIVISION of ACADEMIC AFFAIRS

Regional Research Symposium 2018
Student Services Center

“PROMOTING RESEARCH THROUGH TECHNOLOGY, INNOVATION AND CREATIVITY”

Tuesday, April 17, 2018
Student Services Center

2:45 p.m. - 3:45 p.m.
Graduate Student Government Panel (Multipurpose Room)

3:45 p.m. - 4:45 p.m.
Awards Ceremony (Multi-Purpose Room)
Remarks:
Dr. LaKeisha Harris, Interim Dean, School of Graduate Studies
Announcement of Student Awards:
Dr. Paulinus Chigbu, Chair, Faculty Awards Committee
Outstanding Scholar 2010

3MT Competition
Master’s Category
Doctoral Category
People’s Choice Award

Undergraduate Students (Oral Sessions)
First Place
Second Place

Undergraduate Students (Poster Sessions)
First Place
Second Place

Graduate Students (Oral Sessions)
First Place
Second Place
Regional Research Symposium 2018
Student Services Center

“PROMOTING RESEARCH THROUGH TECHNOLOGY, INNOVATION AND CREATIVITY”

Tuesday, April 17, 2018
Student Services Center

Graduate Students (Poster Sessions)
First Place
Second Place

Faculty (Oral Sessions)
First Place

Faculty (Poster Sessions)
First Place

3:45 p.m. Closing Remarks
Dr. Lakeisha Harris, Interim Dean, School of Graduate Studies
Dr. Victoria Volkis, an Associate Professor of Organic Chemistry, joined the faculty at UMES in 2010. In fall 2017, she was selected as a participant for NASA Social event on Wallops Facility during the launch of Antares rocket with cargo load for the international Space Station. She had press credentials to photograph the launch from a very short distance, communicate with astronauts that were serving on the international station, talk to scientists responsible for experiments that were sent to the station, participate in press-conferences and much more. Her relationship with NASA started in 2013 from writing a collaborative proposal. Her illustrated story and experience will be presented over a short talk. She is an avid photographer and science enthusiast in her down time.
Maurice Crawford began his career as a Fish Ecologist studying the age and growth of fishes with the National Oceanic and Atmospheric Administration (NOAA) in Woods Hole, MA. Dr. Crawford holds a B.S. in Biology from the University of Massachusetts at Dartmouth. He received his Master's degree in Ecology from Rutgers University where he studied the population genetics of weakfish. He also worked at the University of Georgia investigating factors regulating the organization of stream fish assemblages.

Dr. Crawford received his Ph.D. from North Carolina State University where he examined the effects of seagrass spatial heterogeneity on fishes. He was awarded a post-doctoral fellowship with the American Association for the Advancement of Science (AAAS). As an AAAS Science and Diplomacy Fellow, he worked with the US Agency for International Development (USAID) providing technical assistance on USAID’s Climate Change Initiative. He currently is an Associate Professor at the University of Maryland Eastern Shore. His research interests include estuarine habitat conservation/restoration; the dispersal and movement of organisms; and the role of science in policy.
Dr. Eric B. May, Fisheries
Department of Natural Sciences
University of Maryland Eastern Shore

Dr. May received his B.S. in 1971 in Zoology with a Fisheries minor; his M.S. in Biology in 1972 with concentrations in Aquatic Ecology, Parasitology and Cell Biology; and his Ph.D. in 1983 with concentrations in Biochemistry, Pathology and Microbiology.

Since beginning his independent professional career in 1982 Dr. May has served as an assistant professor in the Department of Pathology, University of Maryland School of Medicine during which time he formed and served as coordinator for the Aquatic Toxicology and Pathobiology Laboratory and the first senior pathologist for the National Aquarium in Baltimore. He was Coordinator and then Chief of the Aquatic Animal Health Program for the Maryland Department of Natural Resources for 14 years and State Assistant Unit Leader for the Maryland Cooperative Fish and Wildlife Research for Unit at the University of Maryland Eastern Shore 3 years. Dr. May served as the first director of the NOAA Living Marine Resources Cooperative Science Center (LMRCSC) and the first Distinguished Research Scientist for the LMRCSC. He is currently a professor of fisheries science for the Department of Natural Sciences.

He brings to the University extensive experience and training in fisheries, fish pathology, fish physiology and toxicology having conducted studies on the wastewater discharge impacts on resident fish, contaminant effects on fin-fish health in the Kanawa River, liver tumor distribution in white perch, striped bass larval survival, environmental factors influencing immune response in brown bullheads, distribution and intensity of infection of fish pathogens in the Chesapeake Bay, US Army Aberdeen superfund site investigations on fish health effects, effects of de-icing and anti-icing compounds on fish survival, toxicity of tire leachates to fish, health status of fish resident to tributaries of the Chesapeake Bay and most recently, the impact of agricultural practices on watersheds of the Manokin River as well as contaminants in dogfish resident to the Delaware Bay.
NONCOMPETITIVE PRESENTATION SCHEDULE

Innovation and Technology

REMOTE SAMPLING
Tuesday April 17, 2018 9:00 AM — 10:30 AM SSC Theater Pond and/or Hallway

NASA LAUNCH PHOTO PRESENTATION
Tuesday April 17, 2018 9:15 AM — 10:15 AM SSC Theater

Monetary Presentation

FEDERAL RESERVE CHALLENGE (Abstracts CE 1—CE 5)
Tuesday April 17, 2018 9:15 AM —10:45 AM SSC Multipurpose Room

3MT Undergraduate

ENGINEERING
Tuesday April 17, 2018 10:45 AM —11:45 AM SSC Multipurpose Room

Creative Endeavors

FASHION (Abstracts CE 1—CE 5)
Tuesday April 17, 2018 1:25 PM — 2:40 PM SSC Multipurpose Room
COMPETITION PRESENTATION SCHEDULE

Poster Session:

All Disciplines (Abstracts P1-P35)
Tuesday April 17, 2018 9:00 AM - 10:30 AM, SSC Ballroom

3MT Competition:

All Disciplines
Tuesday April 17, 2018 10:45—11:45 am SSC Multipurpose Room

Oral Sessions:

SESSION I

Session I Group A: All Disciplines (Abstracts O1-O5)
Tuesday April 17, 2018 1:25 PM — 2:40 PM , SSC Theater

Session I Group B: All Disciplines (Abstracts O6-O10)
Tuesday April 17, 2018 1:25 PM — 2:40 PM , SSC Room 2149

Session I Group C: All Disciplines (Abstracts O11-O15)
Tuesday April 17, 2018 1:25 PM — 2:40 PM , SSC Room 2147

Session I Group D: All Disciplines (Abstracts O16-O20)
Tuesday April 17, 2018 1:25 PM — 2:40 PM , SSC Room 2146

Session I Group E: All Disciplines (Abstracts O21-O24)
Tuesday April 17, 2018 1:25 PM — 2:40 PM , SSC Room 2144
PARTICIPANT AND AFFILIATE INSTITUTIONS

Auburn University (Auburn Alabama)
 Department of Entomology and Plant Pathology

The George Washington University Medical Center (Washington, DC)
 1. Department of Pharmacology and Physiology

University of Maryland, Baltimore County (Baltimore, MD)
 1. Departments of Chemical, Biochemical & Environmental Engineering
 2. Department of Physics

University of Maryland, College Park (College Park, MD)
 1. Department of Aerospace Engineering
 2. Department of Biology
 3. Department of Cell Biology and Molecular Genetics
 4. Department of Chemical & Biomolecular Engineering
 5. Fischell Department of Bioengineering
 6. Institute for Systems Research
 7. Institute for Physical Science and Technology, Maryland Pathogen Research Institute
 8. School of Public Health

University of Maryland Eastern Shore (Princess Anne, MD)
 1. Department of Agriculture, Food and Resource Sciences
 2. Department of Business Management and Accounting
 3. Department of Education
 4. Department of Engineering and Aviation Sciences
 5. Department of Human Ecology
 6. Department of Natural Sciences
 7. Department of Pharmaceutical Sciences
 8. Department of Pharmacy Practice
 9. Department of Physical Therapy
 10. Department of Social Sciences
 11. Food Science and Technology
 12. Office of Student Engagement and Lifelong Learning
 13. Organizational Leadership Program

University of Maryland Extension, Wye Research & Education Center (Queenstown, MD)
PARTICIPANTS

Creative Presentations: Fashion
Multipurpose Room 1:25 PM to 2:40 PM

CE1: Product Customization Design Presentations. Bridgett Clinton-Scott, Ph.D.
CE2: The Influence of Mobile Retail Application Functions on Consumer Online Interactions. Shakinah Braxton and Bridget Clinton-Scott, Ph.D.
CE3: Retailers' Social Media Usage and Consumer Interaction. Shavonne Hair and Bridgett Clinton-Scott, Ph.D.
CE4: Retail Mobile Apps: An Emerging Retail Trend. Alexia Moye and Bridgett Clinton-Scott, Ph.D.
CE5: Impact of Social Media on Fashion Retailers: Online and Department Stores. Brenda Oppong-Boateng and Bridgett Clinton-Scott, Ph.D.
CE6: The Influence of Social Media on Consumer Decision Making. Daysia Taylor and Bridgett Clinton-Scott, Ph.D.

Monetary Presentations
Multipurpose Room 9:15 AM to 10:15 AM

CE7: Streaming Music: Is YouTube Still Valuable Enough For Musicians to Increase Viewership. Marcus Baldwin and Monisha Das.
CE8: UMES Federal Reverse Challenge Team Presentation on Federal Open Market Committee Deliberations. Monisha Das.
CE9: The First Amendment and Social Media Companies. Should social media companies be regulated. Monisha Das.
PARTICIPANTS

3MT® COMPETITION PARTICIPANTS

Doctoral Category

3MT1. Isis Amaye, Pharmaceutical Science: The Journey to Cure Drug Resistant Epilepsy
3MT2. Melody Colebrook-Jones, Organizational Leadership: Transform, Integrate, Educate: The Synergy of Dual-Language and STEM
3MT3. Celeste Luning, Organizational Leadership: Identifying a Culture of Grit

Master’s Category

3MT4. Jocelyn Simmons, Food and Agricultural Science: The Efficacy of a Field Collected Fungal Pathogen Against Green Stinkbug in Maryland.
3MT5. Patricia King, Food and Agricultural Sciences: Evaluation of hybrid biomass forage sorghum as an alternative bedding material in broiler houses
3MT6. Adaobi Egwuagu, Pharmaceutical Sciences: Prostate Cancer: The fight to improve patient survival

Undergraduate Trials

Trial 1. Kenneth Austin, Engineering and Aviation Sciences: The Outlook of Air Traffic Controllers and the Proposed Transformation to Create an Unionized Workforce
Trial 2. Kobina Amoyni Manley Nyarku, Engineering and Aviation Sciences: Examining Aviation Safety Practices through Statistical Performance and Data Analysis
Trial 3. Scott Hogan, Engineering and Aviation Sciences: What are the Future Implications of Privatized Industry in Commercial Space Exploration from an Aviation Science Perspective

ABSTRACTS

Poster Presentation Abstract Titles and Presenters

Faculty Poster Session

P01. Assessment of a Student Pharmacist's Validated Tool for Planning Public Health Projects in a Required Course. Hoai-An Truong, PharmD, MPH, FAPhA, FNAP1*, James Onayiga, PharmD1

Graduate Poster Session

P02. Early Drug Discovery and Preclinical Evaluation of Fluorinated Enaminone Benzamides as Potential Antiseizure Agents for Drug Resistant Epilepsy. Amaye, Isis J1, Patrice Jackson-Ayotunde, PhD1*

P03. Effects of Heat Stress on Growth Performance of Broilers and Postmortem Metabolism and Quality Characteristics in Chicken Breast Meat. Wendy Attuquayefio1, Anuradha Punchihewage Don1, Byungrok Min, Ph.D.1*
P04. The Necessity of Electrooculographic Accuracy as a Precursor to Virtual Reality Visual Testing. Nicole Austin¹, Ben Taylor¹, Dieudonne Ndfor¹, Les Keniston, Ph.D.¹

P05. The Probability of Disease Progression and Assistive Device Use in Amyotrophic Lateral Sclerosis. Michelle Gorman¹, Nicole Baker¹, Hilary Davis¹, Nahomy Rojas¹, Les Keniston, Ph.D.¹

P06. Shortcuts to Adiabaticity for Single Qubit Control in Quantum Annealers. Mujibur Bhuniyan¹, Sebastian Deffner, Ph.D.¹

P08. Molecular Modeling Revealed the Drug Resistance of Alternatively Spliced Isoforms of PI3Kδ and FGFR3 in Prostate Cancer. Yu-Chih Chen**, Bi-Dar Wang, Ph.D.¹²

P09. Development of an Assessment of Empathy Tool toward the Patient with Breathlessness: a Preliminary Case Report. George Steer, Ph.D.¹, Chelsea Chmel**, Leigh Hobson¹*, Leland Thomas¹*

P10. Neuroendocrine Differentiation Induces T-Type Ca²⁺ Channel Expression that alter Response to Chemotoxic Agents in Prostate Cancer Cells In Vitro. Adaobi Egwuagu*, Miguel Martin-Caraballo, Ph.D.

P12. Understanding the Population Dynamics of Arthropod Pollinators and their Host Preferences to Mitigate Food Insecurities at the UMES Campus. Ebony Jenkins¹**, Jocelyn Simmons¹, and Simon Zebelo, Ph.D.¹

P13. The Efficacy of a Field Collected Fungal Pathogen Against Green Stinkbug in Maryland. *Jocelyn Simmons¹, Ebony Jenkins¹, Rammohan Balusu², Simon Zebelo, Ph.D.¹

P16. Functional Mobility Loss and Assistive Device Use in Amyotrophic Lateral Sclerosis. Marc McDonald, Gabriella Dejulis, Michelle Gorman, Les Keniston Ph.D.

P17. Peak Expiratory Flow Rates in Patients with Amyotrophic Lateral Sclerosis Compared to Forced Vital Capacity as Predictors of Disease Progression. George Steer, Ph.D.¹*, Corey Nininger¹, Thomas Yoder, Ph.D.¹

P18. Evaluation of Metabolic Responses during Lipid Starvation of an oyster parasite Perkinsus marinus: A Potential Alternative Model for Lipid Metabolism. *Kristin Noell¹, Joseph Pitula, Ph.D.²

P19. Floor Rise and Locomotion Among Persons with Parkinson’s Disease. Dennis Klima, PT, PhD, DPT¹, Frank Freijomil**, SPT¹, Maurice Oliver*, SPT¹, Jeremy Stewart*, SPT¹

P20. Inhibition of Herpes Simplex Virus Replication in Differentiated Neuronal Cells. Faith Osinaga¹, Victor Hsia,
P21. Effects of Early Heat Conditioning at Different Ages on Heat Stress Indicators and Metabolic and Quality Parameters in Broiler Breast Meat. Anuradha Punchihewage Don*, Wendy Attuquayefio, Byungrok Min, Ph.D.

P22. The Influence of the X-Factor on Golf Performance: A Systematic Review. Taylor Wiedel†, Diana Diep†, Erica Potts†, Paige Thomas†, Michael Rabe, DPT†

P23. Student Coaching in a Community-Based Fall Prevention Program on Maryland’s Eastern Shore. Dennis Klima, PT, PhD, DPT†, Jesstine Wolfe†, SPT†, Nathan Austin†, SPT†, Katherine Avila†, SPT†, Emily Wehland, SPT†, Aspen Holmes, SPT†, Jessica Weimert, SPT†, Nicholas Rhoten, SPT†

P24. MicroRNA as Contributors to Prostate Cancer Disparities. Azah Mohamed†*, Yu Chih Chen, Ph.D.², Bi-Dar Wang, Ph.D.²

Undergraduate Poster Session

P25. The Effect of Inorganic Nitrogen Enrichment on Urease Activity within Agricultural Drainage Ditch Sediments. Skye Blake, Sabrina Klick, Eric May, Ph.D.

P26. Use of Shellfish Waste to Obtain Chitin for Reversible Carbon Dioxide Uptake. Alexa Brady†*, Katherine Lipsius†, Benjamin Barnes†, Preeti Sharma†, Victoria V. Volkis, Ph.D.†

P27. The Influence of Temperature on the Antioxidants Capacity of Juiced Aronia Mitschurinii. Taryn Jones, Kierra Smith†, Andrew Ristvey, Ph.D.², Victoria Volkis, Ph.D.²

P28. Isolation and Characterization of Essential Oils in Medicinal Herbs, Plants, And Algae; and Their Applications in Pest Control. Mark Joseph†*, Carson Cohen†*, Simon Zebelo, Ph.D.¹†, Victoria V. Volkis, Ph.D.¹†

P29. Using Hydrolysis to Increase Effectiveness of Chitin for Reversible Carbon Dioxide Capture. Katherine Lipsius†*, Preeti Sharma†, Victoria V. Volkis, Ph.D.†

P30. Probing Polymeric Blends With Natural Extracts From Aronia Mitschurinii As An Effective And Natural Substitute Of Tributyl Tin (TBT) For Antifouling Protection. Derrick Moore, Hernan Osorio, Haileab Ghebrekiden, Baruch Volkis, Paulinus Chigbu, Ph.D.¹, Victoria V. Volkis, Ph.D.¹†

P31. Dye-Sensitized and Innovative Perovskite Solar Cell. Kanieka Neal†*, Kausik S. Das, Ph.D.¹, Yan Waguespack, Ph.D.¹

P32. Dye Sensitized Solar Cells (DSSC). Joshua Orebiyi, Kausiksankar S. Das, Ph.D.

P33. Benchtop Photolithography and High Resolution Photomask Design. Habilou Ouro-Koura*, Kausiksankar S. Das, Ph.D.

P34. Urease Containing Bacteria in Agricultural Drainage Ditch Sediment Bordering a Fertilized and Non-Fertilized Crop Field. Datonya Price, Sabrina Klick, Joe S. Pitula, Ph.D., Eric B. May, Ph.D.

P35. Extraction of Antioxidants from Aronia mitschurinii Juice Using Macroporous Resins. Jasmine Turner†, Gabrielle Mister†, Breann Hrechka†, Andrew G. Ristvey, Ph.D.², Victoria V. Volkis, Ph.D.¹†
Oral Presentation Abstract Titles and Presenters

Faculty Oral Session

O01. Assessing Pharmacy and Physical Therapy Students’ International Intercultural Competency Skills. Yen H. Dang, Ph.D.\(^1\), Latasha Wade, Ph.D.\(^1\), Michelle Gorman, Ph.D.\(^2\), Hoai-An Truong, Ph.D.\(^1\) . Concurrent Session IA – 1.

O02. Measurement of Students’ Progression in the Classroom. Khaled Muhsen Hasan, Ph.D.\(^1\). Concurrent Session IA – 2.

O04 Development, Implementation and Impact of a Global Health Service Mission in a Rural Community in Vietnam. Hoai-An Truong, PharmD, MPH, FAPhA, FNAP\(^1\), Jessica Wearden, PharmD candidate\(^1\), Vu Nguyen, PharmD candidate\(^1\), Alexis Smith, PharmD candidate\(^1\), Yen H. Dang, PharmD, CTTS-M\(^1\). Concurrent Session IA – 4.

O05 Withdrawn

Graduate Oral Session

O06. Utilizing Authentic Leadership as a Conceptual Lens to Revisit the Hawthorne Studies. Linda Cureton and Tyrone Chase, Ph.D. Concurrent Session IB – 1.

O07. Innovating in Complex Environments - The Fuzzy Box. Linda Cureton, Davitta Ealy, Tyrone Chase, Ph.D. Concurrent Session IB – 2.

O09. Global Tide-Circulation-Storm Surge Simulations by ADCIRC: A Case Study for Hurricane Harvey in the Gulf of Mexico. Miaohua Mao\(^1\), Meng Xia, Ph.D.\(^1\). Concurrent Session IB – 4.

O12. The Impact of Marijuana on University Students. Khaled Hasan, Ph.D.\(^1\), Olufisayo Oluwafemi\(^*\), Wilde Ketchatang\(^1\). Concurrent Session IC – 2.

Undergraduate Oral Session

O13. Designing Fractal Supercapacitors. Christopher Blanks\(^*\), Ben Barnes\(^2\), Kausik Das, Ph.D.\(^1\), Mark DeMorra\(^2\). Concurrent Session IC – 3.
Oral Abstracts: Titles and Presentation Data

O15. Identification of Phosphotidylserine Translocation Mechanisms as a Marker of Cell Death in Bacteria. Tobenna Mbonu1, Daniel Dwyer, Ph.D.1,2†. Concurrent Session IC – 5.

O26. The Influence of Temperature on the Antioxidants Capacity of Juiced *Aronia Mitschurinii*. Amit Sharma, Courtney Rhoades1, Nia Alleyne1, Blessing Aro1, Kelsey Chandler2, Andrew Ristvey, Ph.D.2†, Victoria Volkis, Ph.D.1†. Concurrent Session IA – 5.

Faculty Oral Presentations

Assessing Pharmacy and Physical Therapy Students’ International Intercultural Competency Skills
Yen H. Dang, Ph.D.,†, Latasha Wade, Ph.D.,†, Michelle Gorman, Ph.D.,‡, Hoai-An Truong, Ph.D.†
† Department of Pharmacy Practice, University of Maryland Eastern Shore, Princess Anne, MD 21853
‡Department of Physical Therapy, University of Maryland Eastern Shore, Princess Anne, MD 21853

Intercultural competency training in healthcare curriculum allows students to develop knowledge, skills and attitudes, in working with diverse populations. The objective of the study is to determine the level of intercultural competency among pharmacy and physical therapy (PT) students using the Wesleyan Intercultural Competence Scale (WICS). First-year pharmacy and PT students completed the WICS survey to self-assess their intercultural skills using a situational judgement testing approach. The 16-item Likert scale survey was utilized to assess past cultural experiences in different international scenarios. Final computed score ranked students in 6 developmental stages, including the lower three stages of denial, defense, minimization and the higher three stages of acceptance, adaptation, integration. Fifty-four pharmacy and 29 PT students completed the survey. For pharmacy, 27 (50%) students scored in the acceptance, 18 (33.3%) in the adaptation, 6 (11.1%) in the minimization, and 3 (5.5%) in the defense stage. For PT, 24 (82.8%) students scored in the acceptance, 2 (6.89%) scored in the adaptation, and 3 (10.3%) scored in the minimization stage. Situations in which students performed with the highest intercultural competence skills included responses to scenarios involving grocery shopping. Students scored lowest in interacting with local peers scenarios. While most students scored in the acceptance phase of the WICS, many have not achieved higher stages of intercultural competence. Pharmacy schools should integrate global health topics into the curriculum, host international students, and facilitate experiences abroad for students to develop intercultural competency.

Measurement of Students’ Progression in the Classroom
Khaled Muhesen Hasan, Ph.D.†,‡
† Department of Pharmacy Practice, University of Maryland Eastern Shore, Princess Anne, MD 21853
‡Department of Pharmacy Practice, University of Maryland Eastern Shore, Princess Anne, MD 21853

Classroom assessments are best utilized to guide improvements in student learning. Quizzes, tests, writing assignments, and other assessments are administered on a regular basis in classrooms. Classroom assessments are used to evaluate students’ progression. The aim of the study was to measure students’ improvement, which reflects understanding, application, and evaluation of topics covered in the classroom. This prospective study involves first-year post graduate pharmacy students. Fifty-eight first-year pharmacy students participated in this study. Pre- and post-lecture quizzes were available online on ExamSoft. These quizzes have been used to evaluate students in gastrointestinal (GIT) pharmacology course. Time has been allotted to 10 minutes to answer each quiz. The topic was covered using turning point presentation and displayed by an overhead projector. The lecture lasted three hours and a break was given the students every fifty minutes, and then the post-lecture quiz was delivered. Twenty-three students have passed the pre-lecture quiz and 35 students were unable to pass the quiz. Students’ grades have improved significantly (P<0.0001) after the lecture as 45 students passed the post-lecture quiz, and only 13 students were unable to pass both pre- and post-lecture quizzes. Student progression was measured by the grades gained after the lecture. Most students (41) progressed significantly while some students (15) did not change their grades and only two students demonstrated grade regression, p value <0.0009. Quizzes incorporated into traditional didactic lectures could be a useful method to improve student benefit from lectures and also to predict the performance in the assessments. The performance of students in classroom indicated significant improvement in understanding and comprehension of the academic materials. Using both pre- and post-lecture quizzes can lead to improved student preparation and increase student participation in classroom. Pre- and post-lecture quizzes can be used as a method to promote student preparation, retention of information, and performance on assessments.

Bismessite-Type Maganese Dioxide Nanoparticles: Eco-friendly Catalysts for Timely Remediation of Hard-to-Degrade Organic Pollutants
Cui Fang, Ph.D., Marcos A. Cheney, Ph.D.†
†Department of Physical Therapy, University of Maryland Eastern Shore, Princess Anne, MD 21853

O01
O02
O03
Synthetic organic pollutants are responsible for the majority of aquatic and terrestrial environmental pollution. Continuous release of these pollutants (in various forms such as dyes, agrochemicals and personal care products) in conjunction with their poor environmental degradation has resulted in their environmental accumulation. To address this issue, birnessite-type manganese dioxide nanoparticles have been widely studied for their application in rapid degradation of structurally diverse organic compounds. Most of the degradation methods developed thus far utilize a variety of conditions such as UV radiation, harsh acids, high temperature, organic solvents or other sophisticated catalysts that are challenging to employ in large scale environmental remediation settings. We herein report an optimal catalytic condition for the degradation of varieties of organic pollutants using birnessite-type manganese dioxide nanoparticles. The catalysis occurs in a simple and organic solvent-free condition, and does not produce any secondary waste. In addition, the catalyst can be recycled for multiple times without a major loss of catalytic activity.

Global health service includes provision of health education and medical mission to improve health equity for people worldwide. This study describes the development, implementation and impact of a health education and medical mission in a rural community in Vietnam. An academic-community partnership for global health service had the goal to raise awareness and provide health education through an interdisciplinary collaboration to enhance healthcare access and reduce cardiopulmonary diseases and morbidity/mortality for a rural community in Vietnam. The approach was to develop and implement a 3-pronged program, including (1) training clinic staff for sustainability, (2) educating the community for disease prevention, and (3) providing primary care for patients. The focus was on stroke, chronic obstructive pulmonary disease, and smoking cessation, as these are leading causes of death in Vietnam. The team included healthcare professionals and students in medicine, nursing, pharmacy, and public health in both the United States and Vietnam. Volunteers collaborated to provide health education, primary care, and medications to individuals living within a rural district. The team was able to: (1) train 44 clinic staff, including physicians, nurses, pharmacists, nutritionists, herbalist/traditional medicine technicians, physical therapists, healthcare students, and others, (2) educate 561 community members through lectures and hands-on activities to increase awareness and ability to recognize risks, signs and symptoms, treatment and prevention strategies, and (3) provide primary care and medications for 1320 patients, averaging 50 years of age and 3 medical conditions diagnosed per patient. Providing global health service in an inter-professional international rural community clinic enabled volunteers to educate and care for diverse populations, gain real-world experiences, and learn valuable lessons for future missions.
inconsistent with authentic leadership. The Hawthorne studies were part of a research program carried out at the Hawthorne Works of the Western Electric Company by F. J. Roethlisberger, H. A. Wright, Elton Mayo, and G. A. Pencock. The Western Electric Company manufactured equipment for the telephone industry. The studies consisted of a series of investigations conducted between 1924 and 1932. The goal of the studies was to determine what physical and social factors provided increased worker output.

The Hawthorne Effect refers to the observation that “… the output of the workers seemed to be responding to the transformed interpersonal relationship to the ‘boss’ … rather than the explicitly introduced variations in physical conditions of work.” We see this phenomenon in other sciences. For example, electrons are affected by the act of being observed and patient improvement due to increased medical attention. Thus, it is reasonable that scientific approaches to human studies consider behavior changes that arise from being observed.

This presentation will present a meta-analysis of the problems with the Hawthorne studies including: (1) they did not demonstrate a Hawthorne effect, (2) the studies were fundamentally flawed and thus the conclusions are inaccurate and (3) the results were manipulated and offer very little scholarly merit to the foundation of the Human Relations Movement. Additionally, we will review the tenets of the Human Resources Movement which include: The tenets of this movement include: (1) humans as valuable resources for the company, (2) organizational influence on human behavior, (3) participative management, (4) increased organizational communication, and (5) shared individual and organizational goals. The study will examine Hawthorne through the lens of what Bill George (2003) calls an Authentic Company. The characteristics of an Authentic Company are closely related to his five dimensions of Authentic Leadership. Our analysis will explore the incongruence between the findings of the study and the principles of authentic leadership. This presentation will provide scholarly and practical insight for attendees who wish to create leadership and organizational strategies which are grounded in research and proven in the business environment.

Leaders are coached to be innovative by thinking outside of the box. But, what if there is no box? Complex environments require innovative leadership and management to ground-breaking outcomes. This session and will discuss the characteristics of these chaotic environments in order to help attendees understand how to orchestrate creativity and value. This session provides practical tools which are motivated by organizational theory and helps managers and leaders drive change in environments that are not within their direct control. Attendees will be better prepared to face this challenging phase and become more successful. If time permits, the session will offer experiential exercises helping to demonstrate leadership techniques. This session will answer the following questions:

• What is complex adaptive systems?
• How does the theory of chaos and complexity play a role in complex adaptive systems?
• What value does chaos have in organizations?
• What are the leadership strategies for driving change in chaotic environments?
• What are the characteristics of successful leaders of change and innovation?

An Exploration of Leadership Perceptions of a Culture of Grit and the Associated Leadership Behaviors within that Environment

Celeste Raver-Luning*, Prince Attoh, Ph.D., Tao Gong, Ph.D.

Department of Social Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853

In the past decade, the concept of individual grit has captured the attention of social scientists, school systems, the military, as well as the population as a whole. Individual grit is defined as passion and perseverance for long-term goals. Having higher levels of grit has been linked to individual success in academic settings, the military, teaching effectiveness, and entrepreneurial ventures. Despite the numerous studies on the connection of grit to individual success, there has been little empirical research exploring how grit emerges at the team or organizational level. Angela Duckworth, the leading researcher on individual grit, discussed the concept of grit as a cultural element within organizations and performed interviews of leaders within organizations with cultures of grit. A historical case study
Global Tide-Circulation-Storm Surge Simulations by ADCIRC: A Case Study for Hurricane Harvey in the Gulf of Mexico
Miaohua Mao and Meng Xia, Ph.D.
Department of Natural Sciences, University of Maryland Eastern Shore, MD 21853

Predictions of global tide, circulation, and storm surges are significant to coastal communities. In order to accurately simulate storm surge under extreme weather conditions, a global barotropic, depth-averaged, high-resolution (~4 km near the coast and 80 km in the open ocean), unstructured-grid (227882 nodes and 445227 elements) circulation model was configured. Model bathymetry was interpolated from the NGDC’s ETOPO2 data. The amplitudes and phases of eight major tidal components estimated by the ADCIRC model were compared with those derived from the TPXO 7.2. Results indicated that the spatial distributions of the major tidal components (M2, S2, K1, and O1) from ADCIRC were consistent well with TPXO7.2. During Hurricane Harvey (2017), the ADCIRC model using either the CFSv2 or NHC derived data satisfactorily produced the cyclonic winds, centered low-pressure, and hurricane tracks. The hurricane went across the Caribbean Sea and reached the Texas coast on August 26th of 2017. National Weather Service reported 3.66 m water level in the Aransas Wildlife Refuge along the Texas coast. The ADCIRC model using the NHC data predicted a high storm surge over 6 m behind the Bolivar Peninsula. This overestimation was due to the model’s failure to accurately resolve the nearby barrier islands, which resulted in an excessive amount of water mass flooding into the adjacent near the coast.

sub-bays. Our future work will calibrate and validate the ADCIRC model against the observed water levels collected from the Center for Operational Oceanographic Products and Services (CO-OPS) and International Hydrographic Organization (IHO). Moreover, the water level and storm surge produced by the ADCIRC model will be compared with the tidal gauge data from the NOAA Tides and Currents throughout the global ocean. Furthermore, additional efforts will be made to refine the model grid near the coast.

Extraction and Use of Chitin and its Derivatives for Effective Carbon Sequestration
Preeti Sharma†, Benjamin Barnes†, Victoria Volkis, Ph.D.†
†Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853

The regulation of anthropogenic carbon dioxide emissions is currently one of the most challenging environmental issues that many industrialized countries are being faced with due to increasing levels of atmospheric carbon dioxide and its influence on the climate change as one of greenhouse gases. Most of the methods for capturing CO₂ are irreversible methods, in which CO₂ is permanently linked to the absorbent, and as a result a new environmental problem is created. Therefore, it is necessary to prepare a reversible CO₂ sorbent, which can be reused after releasing previously captured CO₂ back under mild conditions to other industrial process such as carboxylation reactions, algae growing reactors and more. Chitin and chitosan are biopolymers with vast structural possibilities for chemical modifications to generate good sorbent for carbon capture. However, their hydrophilic nature leads to swelling of the sorbent during the sorption of wet carbon dioxide, which significantly reduce the active surface. Blends with polysulfone were used to help counteract the swelling of the chitosan followed by CO₂ sorption. Some of blends that only contain 10% of chitosan have shown as high sorption capacity, as pure chitosan, due to significantly decreased swelling. Recent study has shown that the molecular weight of chitin has a significant influence on its sorption properties. To further investigate it, acid hydrolysis of chitin is performed to prepare multiple fractions of lower than natural molecular weight oligomers for better solubility.
Identifying Students Education Problems
Samit Shivadekar,* Yelena Yesha, Ph.D
University of Maryland Baltimore County, Baltimore, MD

Mining social media data is helpful to researchers in learning analytics, educational data mining, and learning skills. It provides a way to examine social medium statistics that conquer the main restrictions of both physical qualitative analysis and huge scale computational study of user-produced textual content. This study is beneficial to researchers in learning analytics, educational data mining, and learning technologies. It provides a workflow for analyzing social media data for educational purposes that overcomes the major limitations of both manual qualitative analysis and large scale computational analysis of user-generated textual content. For this classification we used Naive Bayes Classifier. It notifies educational manager, and other applicable assessment makers to expand further accepting of engineering student’s institution understanding.

The research goal of this learning are: 1) to make the huge amount of data useful for educational purposes, combining both qualitative analysis and large-scale data mining techniques, and 2) to examine engineering students informal tweets on twitter in order to analyze the issues and problems faced by engineering students in their life.

We selected engineering student problems for our study.

The major reasons were:
1. Engineering schools and branch have long been stressed with student employment and preservation topics. Colleges face problems with student recruitments and retention issues.
2. Engineers (IT industry) comprise a paramount part in growth of GDP of nation and have a direct impact on the nation’s financial expansion so their academic problems must be tackled.
3. Predicated on understanding of student’s issues and quandaries, policymakers, educators and difficulty decision makers can make more knowledgeable conclusions on proper interference and services that can help students to conquer obstacles and barriers in education and help the student to solve the problem, and

The Impact of Marijuana on University Students
Khaled Hasan, Ph.D.1, Olufisayo Oluwafemi*, Wilde Ketchatang1
1 Department of Pharmacy Practice, University of Maryland Eastern Shore, Princess Anne, MD 21853

Marijuana is the most widely used illicit drug around the world especially among young people. The aim of the study is to determine the perceptions and attitudes of students at University of Maryland Eastern Shore School of Pharmacy and Health Professions (UMES- SOPHP) towards marijuana and current knowledge on use, benefits and adverse reactions.

First and second year pharmacy students (SP1, SP2), and second year physical therapy (PT) students at UMES-SOPHPs were asked to complete a survey on marijuana. This survey assessed students’ perceptions of the use of marijuana compared with alcohol and tobacco smoking, and evaluated their attitudes about the possibilities of marijuana-induced cancer and addiction.

One hundred ten students completed the survey. The response rate was 72% (SP1=42/60; SP2 38/59; PT=30/32). Thirty percent of students reported using marijuana at some point in their lives, versus the 70% of students have not tried or used marijuana (p=0.0001). The majority of the students (52%) have used marijuana between the ages of 13 and 19 years of old, and 33% of them started using marijuana between the ages of 20-25 years of old. These ages correspond with high school and university stages. Fifteen percent of the students have used marijuana for the first time between the ages of 13 and 19 years. Large number of the students believe that tobacco (66%) and alcohol (57%) are more harmful than marijuana. More than half of students (55%) considered that marijuana is addictive compared with 28% of students suggested that marijuana is not addictive. There was a
significant number of students (68%) opposed the possibility of marijuana-induced cancer (p value<0.05).

With different perceptions, attitudes and growing wide-spread use of marijuana, university students should be educated and become more vigilant about the risks and benefits of marijuana.

Undergraduate Oral Presentations

Designing Fractal Supercapacitors

Christopher Blanks, **Ben Barnes**, **Kausik Das**, **Mark DeMorra**

1. Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853
2. University of Maryland College Park, College Park, MD 20742

In past decades, the application of fractals to electrode design for enhanced signaling and electrochemical performance was a popular subject and enabled the growth of consumer micro-electronics. Supercapacitors, which are energy storage devices with many promising characteristics, have largely grown alongside of such developments in electronics, but little work has been done to use fractal electrodes in supercapacitors. In this work, plane-filling and fractal patterns were used in designing laser scribed graphene supercapacitor electrodes, allowing us to examine any correlation of the scaling laws of capacitance with respect to the fractal order and complexity. We have created different nature inspired fractal structures including Koch, Hilbert, Sierpinski and Peano fractal supercapacitors by laserscribing graphene oxide to make conducting graphene electrodes. An interesting exponential relationship between capacitance and fractal order for the more open structured fractals was observed, the exponent of which was proportional to the Hausdorff dimension. Additional non-linear relationships between capacitance and order were observed for other structures which was correlated with inter-plate repulsion and differences in path length. Use of Polyvinyl acetate as a solid state electrolyte showed promising results in obtaining high charge storage density in these fractal supercapacitors. These findings provide the first step in maximizing the efficiency of fractal-based electrolytic devices by exploring the non-intuitive trends in capacitance with respect to fractal order and complexity. In future we will explore the effect of other solid state electrolytes on capacitance and create layered 3D fractal supercapacitors.

The Correlations Between Cultural Management and the Antioxidant Content in Aronia mitchurinii – Ten Years of Monitoring

Breann Hrechka, **Andrew G. Ristvey**, **Victoria V. Volks**

1. Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853
2. University of Maryland Extension, Wye Research & Education Center, P.O. Box 169, Queenstown, MD 21658-0169

Aronia mitchurinii is a new generation super-berri native to the North-Eastern U.S. and naturally cultivated in Eastern Europe. Previous studies have reported high content of flavonoids, polyphenols, anthocyanins and other phenolic antioxidants in Aronia. Much is known about the high antioxidant content in Aronia juice, however, its phytochemical content has never been correlated to cultural management conditions. These conditions encompass areas such as fertilizing, mineral additives, irrigation, age of the crop, and etc. Since 2006, UMES has been studying the effects of nitrogen treatment, soil moisture, organic versus conventional growing, mineral additives and other factors that influence the antioxidant content of juice and pulp of Aronia. The objectives of this study are: 1) to examine the effect of nitrogen treatment, soil moisture content, organic versus conventional fertilizer exposure and mineral additives on the yield, pH brix and antioxidant content and mineral additives, irrigation, age of the crop, etc. Since 2006, UMES has been studying the effects of nitrogen treatment, soil moisture, organic versus conventional growing, mineral additives and other factors that influence the antioxidant content of juice and pulp of Aronia. The objectives of this study are: 1) to examine the effect of nitrogen treatment, soil moisture content, organic versus conventional fertilizer exposure and mineral additives on the yield, pH brix and antioxidant content and 2) to develop best practice regarding the growing and cultivation of Aronia mitchurinii, and 3) to provide a long-term monitoring data addressing among others also the age of the crop. Results since 2006 will be briefly reviewed and analyzed in this presentation.

Identification of Phosphatidylserine Translocation Mechanisms as a Marker of Cell Death in Bacteria

Tobenna Mbonu

1. Department of Cell Biology and Molecular Genetics, University of Maryland School of Medicine, Baltimore, MD 21201
2. Institute for Physical Science and Technology, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
While prokaryotes do not undergo programmed cell death (e.g., apoptosis and necrosis), bacterial cells challenged with antibiotics have been shown to exhibit similar phenotypes of cell death seen in multicellular organisms. For example, the classic Annexin V assay detecting exposure of the phospholipid, phosphatidylserine, can be used to monitor this phenotype in Escherichia coli stressed by bactericidal antibiotics. This project involves developing a new version of the Annexin V assay where phosphatidylserine translocation to the outer membrane is first detected by luminescence following complementation of a split luciferase enzyme, and loss of membrane integrity can then be detected using fluorescence. This assay will allow us to answer the question of whether phosphatidylserine translocation to the bacterial surface is actually occurring, specificity that is not present in the classic assay. To complement this assay, the Violet Ratiometric Membrane Asymmetry Probe will be used to broadly look at changes in the cell membrane under stress. We expect to see wildtype cells exhibiting these characteristics when the antibiotic is introduced and loss of this phenotype in resistant cells.

Olfactory Decline in Mouse Models of Alzheimer’s Disease
Michael Ray*†, Ricardo Araneda, Ph.D.†
† Department of Biology, University of Maryland, College Park, MD 20742

Alzheimer’s disease (AD) is a neurodegenerative disorder that is a form of fronto-temporal dementia. One of the proposed causes of AD is tauopathy, a condition in which the tau protein, a structural protein in neurons, builds up abnormally, thereby disrupting neuronal communication. In humans, a mutation on chromosome 17, the P301L mutation, is proposed to be one of the causes of this tauopathy. Interestingly, one of the earliest detectable symptoms in AD, before major neuronal degeneration, is impaired olfactory discrimination; however the link between this impairment and the onset of AD is not known. The olfactory bulb (OB) is the first part of the brain that processes olfactory information. Circuits within the OB produce the neural computations necessary for odor discrimination. Anatomically, the OB is divided into two regions, the main olfactory bulb (MOB) and accessory olfactory bulb (AOB). The MOB processes natural odors that are associated with food or predators, while the AOB processes social odors that are associated with mating and aggression. The goal of this research was to analyze how and when olfactory behavior changes in the mouse model of tauopathy, the rTg4510 mouse. This transgenic line models the P301L mutation in humans and can be used as an animal model of AD. Standard behavioral assays were conducted to test olfactory discrimination in the rTg4510 mouse. One such assay, the habituation-dishabituation test was analyzed with structurally similar odor pairs using mice of different ages. By analyzing this assay, we will be able to determine when the earliest signs of AD occur in this mouse model. By analyzing the differences in olfactory behavior between mice of different ages for both natural and social odors, we will be able to determine when the earliest signs of AD occur in this mouse model. Our results show that as the mice age, olfactory discrimination of natural and social odors declines significantly. This indicates that circuits in the OB could be affected prior to neuronal degradation and used as an early onset sign in AD. Further tests will need

Real-Time Aerosol Particle Measurement Methods: Air Quality Analysis
Francis Oyebanjo*, Akua Asa-Awu, Ph.D.
† Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742

Aerosols are a major contributor to air pollution. These atmospheric particles have adverse effects on the environment and human health. Particles less than 2.5 microns are known to deposit in respiratory airways. Anthropogenic (human-made) particles are mostly found in urban air near highways and factories. These particles can lead to decreased lung function, irritated breathing and, in severe cases, nonfatal heart attacks. The aim of this study is to quantify and compare real time particle measurements with different model condensation particle counters (CPCs) of varying fundamental technologies. The efficiency of each CPC is examined at different instrument settings for compounds of both known and unknown compositions. The devices are then field tested on campus and in suspected regions of poor air quality. The reported concentration of small particles is modified by the aerosol composition. The water based CPC counts fewer particles than its butanol counterparts. This is due to the fact that instruments with lower particle detection limits tend to count more particles.
to be conducted to examine the underlying cellular processes that cause the OB deficits.

O18

UV-Vis Analysis of Interaction of Adenine and Vitamin B6

Yasmin Roye*, Uche Udeochu, Ph.D
Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD

At pH 7.0, adenine and pyridoxine were analyzed using ultraviolet-visible spectroscopy (UV-Vis). The question was posed to further understand the biochemical cellular activities. What role do the small molecules such as pyridoxine, a derivative of vitamin B6, play in this subject? The level of adenine in the human body can serve as a marker for body’s susceptibility to metabolic disorders and diseases. Vitamin B6 deficiency or its inefficient usage is associated with microcytic anemia, neuropathy, and weakened immune. Both have been documented to be highly electrochemically active. Samples were scanned between 200 and 800 nm using the UV-visible light DU Spectrophotometer. Six solutions of adenine were taken from stock (0.01 M adenine), increasing from 1 x 10^{-4} M to 6 x 10^{-4} M. Six solutions of pyridoxine were taken from stock (0.001 M pyridoxine), increasing from 4 x 10^{-4} M to 4 x 10^{-5} M. These, respectively, were made with a pH 7.0 sodium phosphate buffer and were used to plot the absorbance spectrums. While controlling the concentration of adenine at a constant value, mixed solutions of adenine and pyridoxine were prepared by adding incremental volumes corresponding to increasing concentrations of pyridoxine to adenine. UV-Vis spectral results showed that adenine and pyridoxine absorbs at 260 nm and 314 nm respectively, and the two compounds obeyed Beer’s law with molar absorptivity of 0.000771 L/mol x cm and 0.00068 L/mol x cm, respectively. UV-Vis spectra of adenine-pyridoxine complex showed absorptivity of 0.001741 L/mol x cm. A double reciprocal plot using UV-Vis data for adenine-pyridoxine was linear. The linearity of the plot justified that a 1:1 complex of the two compounds was formed, and the binding constant (k) was determined to be 2.9135 L/mol x cm. A double reciprocal plot using UV-Vis and the binding constant (k) was determined to be 2.9135 L/mol x cm. While controlling the concentration of adenine at a constant value, mixed solutions of adenine and pyridoxine were prepared by adding incremental volumes corresponding to increasing concentrations of pyridoxine to adenine. UV-Vis spectral results showed that adenine and pyridoxine absorbs at 260 nm and 314 nm respectively, and the two compounds obeyed Beer’s law with molar absorptivity of 0.000771 L/mol x cm and 0.00068 L/mol x cm, respectively. UV-Vis spectra of adenine-pyridoxine complex showed absorptivity of 0.001741 L/mol x cm. A double reciprocal plot using UV-Vis data for adenine-pyridoxine was linear. The linearity of the plot justified that a 1:1 complex of the two compounds was formed, and the binding constant (k) was determined to be 2.9135 L/mol x cm. A double reciprocal plot using UV-Vis and the binding constant (k) was determined to be 2.9135 L/mol x cm.

O19

Contribution of the PTS Beta-glucoside EII transporter to the pathophysiology of the Group A Streptococcus

Alyiah B. Silver* and Kevin S. McIver, Ph.D.
Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland

Streptococcus pyogenes (Group A Streptococcus, GAS) are gram-positive pathogens capable of causing a variety of noninvasive and invasive infections in humans. In order to remain a successful human pathogen, GAS must sense, interpret and react to cues in its environment. Nutrients, specifically carbohydrates, are particularly important environmental signals due to their abundance in the human host and the absence of a functional TCA cycle in GAS. A link between sugar metabolism (mediated by the phosphoenolpyruvate-dependent phosphotransferase (PTS) system) and virulence has been established in GAS, where PTS-deficient GAS resulted in increased lesion size and severity in a mouse model of infection. Screening of insertional inactivation mutants generated in all 14 PTS EII transporters of MGAS 5005 in blood revealed the betaglucoside EII as an EII with particularly interesting phenotypes that indicate its importance in overall GAS pathophysiology. Here, we generated non-polar allelic exchange mutants in all genes of the beta-glucoside EII genetic locus in M1T1 5448 and characterized the contribution of each to overall GAS pathogenesis through further functional analyses. This study indicates that each gene of Beta-glucoside genetic locus contributes differently to overall GAS pathophysiology.

O20

Analysis of the Leishmania-Human Macrophage Dual Transcriptome Investigation of Host-Pathogen Interactions

Sarah Sudlow*, Ashton Trey Belew, Ph.D., Najib El-Sayed, Ph.D.
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742

Leishmania major is a protozoan parasite responsible for an infectious disease known as Leishmaniasis. Leishmaniasis, which is spread by infected sandflies, predominantly affects South America, Africa, and the Middle East. The intracellular parasites primarily reside in host macrophages and are unsuccessfully eradicated by the host immune system. RNA-sequencing tech-
Effect of Direct Drive Flapping Mechanism on MAVs Flapping Frequency
Yoseph Tewodros* and James Lankford, Ph.D.
Department of Aerospace Engineering, University of Maryland College Park, College Park, MD 20742

For years, the challenge of flight with multi-rotor Unmanned Aerial Vehicles (UAVs) is that the larger the size of the UAV, the less efficient the device becomes. This is because this sort of UAV requires much more energy for each of its rotors, and subsequently, has a lot more maneuverability. Looking into other methods of flight for smaller UAVs can help with maximizing the energy used. This research looks into the concept of flapping wings to eventually be able to incorporate it into drone technology that parties can use to make drone flight more accessible. By using a high-speed camera and recording marked points of deflection on a “dummy” wing, the data generated can be quantified into a working model to study other wing shapes that are more aerodynamically and energy efficient.

"Kidney-on-a-Chip": Modeling In Vivo Tubular Networks
Amarachi Ude*, Ryan Sochol, Ph.D.
Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742

The human kidney is characterized by a significant anatomical complexity. In the kidney’s functional unit, the nephron, blood and urine flow in adjacent, sinuous tubules, having specific interactions. Researchers have met difficulties in accurately modeling these environments. Challenges remain in recreating the permeability, microcurvature, heterogeneity, and tortuosity of the tubules. This study team’s approach to addressing these issues involves using 3D printing-based fabrication and suspended microfluidics to create semipermeable, tubular structures with tortuous microarchitectures. This specifically entails: 1) creating the tubular framework using PolyJet 3D printing and 2) coating the printed channels with permeable, biocompatible material. Recently, we have printed prototypes with varying microcurvatures. We have encountered difficulty in clearing these devices, but we intend to clear at least one from each configuration for further testing. With iterative designing and testing, we hypothesize that these devices will better model the proximal tubules in the kidney’s nephrons for applications in therapeutics research.

The Effect of Vagal Nerve Stimulation on Auditory Task Learning
Lydia Mazze*, Jonathan Fritz, PhD.
*Institute for Systems Research, University of Maryland, College Park, MD, 20742

Vagal nerve stimulation (VNS) involves electrically activating the vagal nerve to stimulate the release of key neuromodulators acetylcholine and norepinephrine throughout the brain, which increase forms of synaptic plasticity that underlie learning. VNS is hypothesized to promote auditory learning by enhancing adaptive brain activity, attention and memory. To investigate this conjecture, an initial control group of non-VNS ferrets were trained to discriminate four tonal variants of the Chinese Mandarin syllables “ma” and “di” to form a behavioral baseline for these tasks. The ferrets were trained to discriminate the flat contour toneme from the other three tonemes and differential waterspout licking was used to measure their behavior through the Go-NoGo paradigm. The next step is to deliver VNS prior to task training to determine whether or not it affects learning. This research has vast applications, as vagal nerve stimulation could eventually be used to promote learning and memory in humans.
Relation of Trauma and Mood to Cognitive Functioning in African American College Students

Glory-Ruth Kang*, Princess Bolton, Michael K. Reed, Ph.D.,
Department of Education, University of Maryland Eastern Shore, Princess Anne, MD 21853

Mood disorders have been found to impact up to 30% of the US population during their lifetime. African American and minority populations have been found to have higher incidences of these disorders. Cognitive and social stressors have been found to trigger mood problems in many individuals. The stressors often stretch individual coping abilities and yield a negative impact on their ability to function and problem solve. This study examined the relationship of past stressors and mood to the cognitive and problem solving functioning of African American college students. Entering college for the first time, often yield stressors associated with finances, social networks, academic work, and future goals. These stressors along with trauma from their life prior to college impact performance in memory and problem solving activities. One hundred Student volunteers completed self-report questionnaires examining mood and trauma. In addition, students completed two cognitive tasks that related to memory. The first was associated with long term memory for language the second a short term memory for visual stimuli task. The results suggest that the students’ performance was impacted based on their mood status. A detailed analysis examined defensive style and the relation of mood symptoms.

Relation of Trauma and Mood to Coping Skills in the Functioning in African American College Students

Damaris E. Ramirez Tolentino*, Isaiah E. Lesesne, Michael K. Reed, Ph.D.
Department of Education, University of Maryland Eastern Shore, Princess Anne, MD 21853

Trauma is considered a significant issue that impacts the mood and social functioning of young adults and college students. Previous studies have reported more than 2/3 of incoming first year college students have experienced 2 or more significant traumatic incidents prior to entering their college studies. The same study reported 10% of these students possessed symptoms that would classify them as having PTSD. The current study examines the functioning of 100 college students at a historically Black university.

The student volunteers completed questionnaires associated with their mood functioning, exposure to trauma, and coping strategies. A detailed analysis examined the differences between individuals who were exposed to trauma and low exposed individuals in their mood functioning and use of various coping strategies. Results suggest that coping strategies differed between individuals based on level of exposure and presence of negative mood symptoms.

The Influence of Temperature on the Antioxidants Capacity of Juiced Aronia Mitschurinii.

Amit Sharma, Courtney Rhoades1, Nia Alleyne1, Blessing Aroh1, Kelsey Chandler2, Andrew Ristvey, Ph.D. 2*, Victoria Volkis, Ph.D.1*

1Department of Natural Sciences, University of Maryland Eastern Shore, 1 Backbone Road, Princess Anne, MD 21853

Aronia Mitschurinii, also known as the black chokeberry, is a fruit-bearing shrub which is native to Maryland. The aronia berry has a dark purple color which can be attributed to the berry’s extremely high content of anthocyanins. Antioxidants are an important nutrient needed for capturing naturally formed free radicals in living organisms, and prevention of oxidation and cancer formation. Aronia’s reputation of being a super berry entices small farms to use it as a perspective specialty crop. The berry’s high content of polyphenols also makes it a likely ingredient in several new products such as, organic teas and vitamin supplements. All food applications of any fruit require high temperature pasteurization as a major step during the fruit processing. There are three major effects higher temperatures can have on antioxidants; isomerization, decomposition or the loss of water. Here we present the data for the antioxidant content of Aronia Mitschurinii as a function of the variation in temperature and the time exposed to these temperatures. Detailed measurements and analysis of anthocyanin, flavonoids, polyphenol content and ORAC is presented and discussed. The aim of this project is to determine the optimal pasteurization and heating conditions that would avoid significant lost in the antioxidant capacity in aronia.
Followership from the Jonestown Survivors Perspective

*Wendy M. Edmonds, Ph.D.
ORLD Program, University of Maryland Eastern Shore,
Princess Anne, MD 21853

In 1978, the United States witnessed followership devastation for the first time. It was the worst destruction of human life in a religious organization—Jonestown’s Peoples Temple. The murder-suicide consisted of the very act of drinking grape Flavor Aid laced with cyanide—coupled with the assassination of five members of a congressional party at a nearby airstrip and the slashing deaths of a mother and her three children in the Temple’s headquarters in Guyana’s capital city of Georgetown. This took the lives of 918 men, women, and children. But, there were those who survived the worst destruction of human life in a religious cult in the United States at that time. The story of the survivors began that day. To be a survivor of Peoples Temple is to have been a follower of Jim Jones. For the purpose of this research, followers were generally defined as subordinates with little to no authority who eventually fall into line. Studying the survivors of Jonestown presented an opportunity to capture their viewpoints as they relate to followership. The participants became a source of empowerment that could be seen as reflecting alternative scientific paradigms by acknowledging reality as being filtered through multiple lenses instead of emphasizing the importance of scientific objectivity and interpersonal detachment.

The purpose of this qualitative study was to explore the perceptions and attitudes of the survivors as they relate to the Peoples Temple massacre at Jonestown. Several major themes emerged that supported key concepts in followership, charismatic, and self-sacrificial leadership theories. One of the themes in the analysis of the participant’s transcript, which was particularly prominent was ‘Willful Blindness to Unscrupulous Leadership’. Using a three-tiered construct presented insight into the various reasons why Jim Jones’ bad leadership was disregarded on many levels. The categories are as follows: Willful Blindness to Unscrupulous Leadership a) due to commitment to what the individual considers the greater cause; b) for personal gain; and c) due to powerlessness as a result of being consumed by fear and hopelessness. More specifically, this describes Jim Jones’ deception and internal turmoil experienced by members of Peoples Temple. As followers, their commitment was to the agricultural project more so than the leader.

In organizations of every kind, there remains a need to explore leader/follower relationships and the characteristics of charisma and powerlessness that leads to unquestioning member loyalty. Most leadership theories are largely leader-centric with followers only recently entering into the equation, thus creating a major paradigm shift. In order for followers to be motivated and committed, they must understand their role, purpose, and contribution to the overall success of an organization. Followers of charismatic leaders willingly surrender to the domination of the leader because the sacred character of the relationship makes such compliance honorable. However, exploited honor creates a toxic breeding ground for followers.
Assessment of a Student Pharmacist’s Validated Tool for Planning Public Health Projects in a Required Course

Hoai-An Truong, PharmD, MPH, FAPhA, FNAP*, James Onayiga, PharmD

*Department of Pharmacy Practice and Administration, University of Maryland Eastern Shore, School of Pharmacy and Health Professions, Princess Anne, MD

The Center for the Advancement of Pharmacy Education educational outcomes include health promotion and disease prevention competencies. Yet, there is limited validated tool to guide students. Evaluate the utility of an assessment, development, and assurance: pharmacist’s tool (ADAPT) for students to plan public health projects in a required course. Students are assigned group projects, including the design, development, and plan for implementation and evaluation of a solution to address a self-identified public health problem. Students used an ADAPT tool, a published instrument for ensuring quality implementation of public health programs. A survey was administered afterwards to evaluate the usability and value of the ADAPT. Fifty seven students responded to ADAPT project survey. The average time to use the tool in planning the project is 21 minutes. Respondents indicated that tool is helpful to apply public health concept (n=54, 94.7%), relevant to course and public health (n=55, 96.5%), and help to focus the project (n=55, 96.5%). User satisfaction was found to be high with the majority indicating they would recommend to others and use again (n=54, 94.7%). Feedback include improving format (n=10, 17.5%) and minor revisions to some questions (n=16, 28.1%). Data also showed that the tool is valuable for planning as respondents reported it helped them to focus (n=55, 96.5%). With selection of multiple responses, participants recommend using this tool in multi-setting including community service-learning (n = 37, 64.9%) and advanced pharmacy practice experiences (n=31, 54.4%). Students responded positively to the usefulness and value of the ADAPT tool in planning public health projects. Students recommend using the tool either as published or with minor revisions. Further evaluation and revision of the tool for another cohort of students at additional schools may be helpful to enhance the tool.

Early Drug Discovery and Preclinical Evaluation of Fluorinated Enaminone Benzamides as Potential Antiseizure Agents for Drug Resistant Epilepsy

Amaye, Isis J1, Patrice Jackson-Ayotunde, PhD1*

1Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland. 21863. U.S.A

Defined as “failure of a patient’s seizures to respond to at least two antiepileptic drugs (AED) that are appropriately chosen and used for an adequate period to achieve sustain seizure freedom,” drug resistant epilepsy (DRE) is becoming more of an increasing burden in the epilepsy community. Statistics show that about 25% - 40% of epilepsy patients are at risk of becoming drug resistant. As a result, there is a need for researchers to develop novel therapeutics to help in the management of DRE. A previously synthesized lead KRS-5-Me-OCF3 was shown to be active in the MES/scMET rodent seizure model and elicited its anticonvulsant effects by acting as a positive allosteric modulator of GABA at the BDZ site. The goal of our research group therefore is to develop a library of fluorinated enaminone benzamides and evaluate their anticonvulsant activity for DRE in animal models of seizure and also to determine their potential mechanism of action. A library of 14 fluorinated enaminone benzamides were synthesized in our lab using established synthetic methods to achieve products of quantifiable yield and of high purity. The in vivo animal studies and in vitro target studies is done through collaborations with the National Institutes of Health. The purified compounds are sent for animal studies where they are evaluated in various animal models of seizure including the 6Hz 44mA animal model of DRE. The compounds are also sent out for target screening to be analyzed in various antiepileptic drug target such as the GABAA receptor. Out of the library of 14 compounds 4 hit compounds have emerged with anti – seizure activities in at least one animal model of epilepsy. Of great importance is the anti – seizure properties of the 4 hit compounds in the 6Hz 44mA model of DRE especially THA 40 and THA 36 with outstanding pharmacological
Effects of Heat Stress on Growth Performance of Broilers and Postmortem Metabolism and Quality Characteristics in Chicken Breast Meat

Wendy Attuquayefio, Anuradha Punchihewage Don, Byungrok Min, Ph.D.

Department of Agriculture, Food and Resource Sciences, University of Maryland, Eastern Shore, Princess Anne, MD 21853.

High environmental temperature can induce decreased broiler productivity and quality deterioration of chicken meat. Little information is available on the mechanisms causing the heat stress-induced meat quality deterioration. This study was aimed to determine effects of acute and chronic heat stress during the finishing period on growth performance of broilers and postmortem metabolism and quality of chicken breast meat. Male broiler chicks raised for 42 d were subjected to acute (A-HS; at 36 °C for 2 h at Day 42) and chronic (C-HS; cyclic temperature control at 32/25 °C for the last 2 weeks) heat stress. The effects of vitamin E supplementation against heat stress were also determined. Growth performance (feed intake, weight gain and feed conversion ratio) was determined during the growing period. At Day 43, breast meat was harvested at 0.25, 1, 3 and 24 h after slaughtering to determine parameters of postmortem glycolysis: pH, glycogen potential, adenosine monophosphate (AMP), adenosine diphosphate (ADP), adenosine triphosphate (ATP), respectively, and AMP-activated protein kinase (AMPK) activity, protein oxidation, and total antioxidant capacity. Quality parameters (color, water holding capacity, protein solubility, cooking yield and texture) were determined in the meat at 24 h postmortem. Growth performance was adversely affected by heat stress. A-HS and C-HS showed lower ATP, higher AMP/ATP ratio and higher AMPK activity at 1 h postmortem compared to the control without heat stress. Protein oxidation was increased by heat stress. At 1 h postmortem, pH was significantly lower in A-HS as its lactate content was significantly higher compared to C-HS and the control. The effects of vitamin E against heat stress were not observed. The rapid decline in initial pH and protein oxidation caused by heat stress could result in meat quality deterioration. However, no difference was observed in quality parameters among the treatments. This may be due to the high occurrences of woody breast/white striping in the meat regardless of the treatments. Woody breast/white striping are major quality defects in broiler breast meat and their incidence may not be related to heat stress.

The Necessity of Electrooculographic Accuracy as a Precursor to Virtual Reality Visual Testing

Nicole Austin, Ben Taylor, Dieudonne Ndfor, Les Keniston, Ph.D.

Department of Physical Therapy, Food and Resource Sciences, University of Maryland, Eastern Shore, Princess Anne, MD 21853.

Visuospatial hemineglect is a condition following hemispheric brain damage that results in a lack of awareness of objects on the side contralateral to the damaged hemisphere. Previous studies have helped identify structures and pathways relevant to Hemineglect, as well as features of neglect such as a lack of visual tracking with the eyes to the neglected side. Other studies have shown that multisensory cuing may be beneficial in improving visual tracking in hemineglect, and virtual reality (VR) is a promising method of providing such multi-sensory cuing. Electrooculography is a procedure used to measure degree of eye movement. It can potentially be used to measure increases in eye movement toward the area of neglect and therefore, measure improvement in visual hemineglect. The accuracy and sensitivity of our electrooculography equipment will be verified by measuring the eye movement of normal subjects using computer generated targets.
The Probability of Disease Progression and Assistive Device Use in Amyotrophic Lateral Sclerosis
Michelle Gorman¹, Nicole Baker¹, Hilary Davis¹, Nahomy Rojas¹, Les Keniston, Ph.D.¹
Department of Physical Therapy, University of Maryland Eastern Shore, Princess Anne, Maryland 21853

Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive motor neuron disease that results in functional deficits and the inability to ambulate independently¹. Our aim is to identify data sources gathered during the practice of tertiary Physical Therapy care at the multidisciplinary clinic in regards to the relationship between disease progression, AD use, and functional mobility. Performance data and history of care was collected both from patients actively receiving physical therapy services at a local ALS multidisciplinary care and retrospectively from medical records analysis. The data collected to date suggests a significant relationship between the ALSFRS-R score and three mobility-related subscales (Turning in bed, walking, and climbing stairs). Further analysis shows that a sizable percentage of patients require an assistive device on their very first visit.

Shortcuts to Adiabaticity for Single Qubit Control in Quantum Annealers
Mujibur Bhuniyan¹, Sebstadian Deffner, Ph.D.¹
¹Department of Physics, University of Maryland Baltimore County, Baltimore, Maryland 21250

We have been using devices to compute for more than two millennia. However, the classical paradigm of computing has reached a dead end. According to Moore’s Law, the density of transistors has been doubling every two years, or so. Yet, the most recent technologies have reached densities comparable to atomic scales. Thus, to keep further improving an entirely new paradigm of computations will be instrumental. A promising development is Quantum Computers which are exponentially more powerful than their classical ancestors for certain tasks. Among many proposals for viable platforms for quantum computation, so-called quantum annealers are good candidates. Quantum annealers are prepared in a known ground state and then slowly evolved to the final configuration. Thus, the outcome of the computation is encoded in the final ground state. However, the quantum adiabatic theorem states that when changing a system, the change has to be infinitely slow if one wants to keep the system in its instantaneous ground state. Our goal is to suppress computational errors in quantum annealers arising from parasitic excitations induced by finite-time driving. A rather recent tool-kit from quantum control provides a way to suppress such computational errors. Dubbed "shortcuts to adiabaticity" these methods provide means to implement fast processes with the same, error-free outcome that would result from infinitely slow driving.

The most prominent example of quantum annealers is the DWave machine. Its chip can be well-described as a quantum Ising model in the transverse field. Previous work has studied how to implement shortcuts to adiabaticity for global changes of the magnetic field. For realistic applications, however, such as in the DWave machine one is rather interested in only local changes of the field, i.e., in control of single qubits rather than flipping all qubits at the same time. Therefore, our work focuses on deriving shortcuts for such local perturbations. The quantum Ising model can be mapped onto “stacked” avoided crossing, which are commonly on as the Landau-Zener model. This model is the best studied example for the dynamics of qubits, and thus it provides a natural entry point into the analysis. Already our first results revealed interesting issues arising from local perturbation: for global changes the energy diagram is fully determined by avoided crossings; for local control, however, the energy diagram is comprised of avoided crossing and diabatic crossings of the energy levels.

To keep things simple, we study a one-dimensional chain with periodic boundary conditions. In such an arrangement, we will be able to see the perturbation wave travel, meet, and interfere – and the diabatic crossings are a signature of these effects. Our main goal is to show that the control fields can be limited to the sound cone, i.e., we only need to suppress excitations where they can have traveled, but nowhere else. This is in stark contrast to previous proposals, which found highly-involved, long-range control fields. A better understanding of local control will lead to the development of a more efficient and easier way to achieve better "Shortcuts To Adiabaticity" that will be realistic and fast enough to be useful.
Knee osteoarthritis (OA) is a widespread pathology often requiring joint replacement surgery. The articular cartilage (AC) can be examined clinically using real-time ultrasound (RTUS) and previous studies have found that AC is appreciable with good interrater reliability for assessing articular cartilage thickness (ACT). The aim of this study is to examine the ACT of the trochlear surface in three locations: medial (MTS) and lateral surface (LTS) and notch of 20 to 60 year olds with and without knee pain and to examine if correlations exist between ACT, lower extremity (LE) alignment and age. Volunteers included 45 subjects (11 M, 34 F), mean age 35 yrs (23-59), height 167.2 cm (154.0-192.5), mass 77.1 kg (50.5-137.1), BMI 27.7 kg/m² (19.63-50.5). Subjects were stratified by 10 yr increments for group analysis (20-29 n=21, 30-39 n=9, 40-49 n=8, 50-59 n=7). RTUS was used to measure MTS and LTS, and notch ACT at 90° knee flexion. A linear transducer (7.5-12 MHz) was placed in short axis over the trochlear surface. Standing LE frontal and sagittal plane alignment were calculated using photographs and ImageJ. Physical performance assessments (5-Time Sit to Stand (5STS) and 30-second Sit to Stand (30STS) were performed to assess LE strength and endurance, activity level was calculated from performance assessments and a questionnaire. Trochlear ACT (cm) for LTS was 0.24 (0.11-0.30), notch was 0.36 (0.21-0.52), and MTS was 0.23 (0.10-0.36). One way ANOVA with Tukey post hoc testing revealed no significant difference in trochlear surface ACT between age groups. Pearson correlation showed a low significant correlation between age and MTS ACT, -0.36 (P=0.05). No significant correlations were found between ACT and tibiofemoral angle, Q-angle, or recurvatum. (P=0.05). Significant differences existed in ACT in all subjects for MTS, LTS, and notch (P=0.05). There is no evidence to support a relationship between ACT and age or LE alignment. The ACT across the trochlear surface is not uniform at LTS, notch, and MTS and values may vary depending upon site of examination.
Development of an Assessment of Empathy Tool Toward the Patient with Breathlessness: a Preliminary Case Report

George Steer, Ph.D.*, Chelsea Chmeli**, Leigh Hobson**, Leland Thomas**
*Department of Physical Therapy, University of Maryland, Eastern Shore, Princess Anne, MD

Perceived empathy from the caregiver improves patient outcomes, patient compliance, and patient satisfaction while promoting provider fulfillment. The development of empathy during academic and clinical practice learning promotes the understanding of how various conditions may affect treatment delivery and functional outcomes. It is hypothesized that empathy in the physical therapy student towards a patient with breathlessness (SOB) may increase after experiencing a simulation of restrictive lung disease (RLDS) during physical activity. The assessment tool was developed using the Individual Reactivity Index (IRI), the Clinical COPD Questionnaire (CCQ) and open-ended questions. Inclusion/Exclusion criteria and protocol methodology were approved by the Univ. MD Eastern Shore IRB. Five students were assessed for empathy before and after two six minute walk tests (6MWT), the first without RLDS and the second with the simulator; a Threshold IMT®. Baseline demographics and physiological measurements were taken and the simulator set to require 30% of maximal inspiratory pressure for tidal breathing. Vital signs, end-tidal carbon dioxide (ETCO2), Modified Borg Dyspnea Scale (MBDS), and Rating of Perceived Exertion (RPE) were recorded at predetermined intervals during and after the 6MWTs. Participant demographics: n=5; 3 females; age: 25-30 years; 3 Caucasian, 1 African-American, 1 Asian. Normal vital signs, maximal inspiratory pressure, gait, balance, and negative PAR-Q. Physiological responses to 6MWT w/ RLDS compared to post 6MWT w/o RLDS, subjects displayed mean differences in SBP (7.64%, 4.2-13.3), HR (11.2%, 3.3-25.2) and 6MWT distance (4.56%, 11-23.3). The IRI decreased slightly (50.22 pre to 48.44).

All subjects expressed increased empathy for patients with breathlessness in open-ended and SOB symptomatology questions. RLDS induced cardiopulmonary stress which may have led to increased awareness of breathlessness. Although the IRI empathy assessment did not demonstrate much change, there is evidence of increased empathy in subjective open-ended questions. The assessment tool and protocol could be refined for query clarity and technical processes.

Neuroendocrine Differentiation Induces T-Type Ca2+ Channel Expression that alter Response to Chemotoxic Agents in Prostate Cancer Cells In Vitro

Adaobi Egwuagu*, Miguel Martin-Caraballo, Ph.D.
Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853

Neuroendocrine differentiation (NED) has been associated with the progression of prostate cancer (PCa) to an androgen resistant (AR) phenotype. NED evokes a significant increase in T-type Ca2+ channel expression, resulting in changes in Ca2+ homeostasis. AR PCa becomes resistant to treatment with antimotic agents docetaxel (DTX) and etoposide (Etop), leading to increased mortality. In this study, we investigated the role of T-type Ca2+ channel expression in promoting chemoresistance to antimotic agents in PCa cells undergoing NED in vitro. Experiments were performed in LNCaP cells, a PCa-derived cell line. Stimulation of LNCaP cells with IL-6 and FSK evoked an increase in the molecular and functional expression of T-type Ca2+ channels. Treatment of undifferentiated LNCaP cells with DTX (100-1000 nM) or Etop (1-50 mM) caused a concentration-dependent decrease in cell viability. DAPI staining indicated that DTX treatment also evoked a significant increase in the number of apoptotic cells in control cells, but not in cells undergoing NED. LNCaP cells undergoing NED expressed increased resistance to DTX (or Etop) treatment. To test whether this increased resistance...
Non-steroidal Anti-inflammatory Drugs (NSAIDs) Usage in the United States: What Do Consumers Need to Worry About?

Devanshi Gandhi*, Relindis Ngwa, Elvis Chi, Nancy Wambi, Adit Shah, Madan Kharel, Ph.D.

School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used drugs. Access to these drugs over the counter make them easily accessible to the public. However, there is a large knowledge gap concerning the adverse effects of these drugs, some of which are life-threatening. Due to the serious side effects of NSAIDs, these medications are also called “silent killers.” Statistics will be presented concerning the trend of NSAID use in the United States in addition to common adverse health effects. The poster will communicate signs and symptoms that need to be closely monitored to prevent adverse health outcomes.

The Efficacy of a Field Collected Fungal Pathogen Against Green Stinkbug in Maryland

*Jocelyn Simmons¹, Ebony Jenkins¹, Rammohan Balusu², Simon Zebelo, Ph.D.¹

¹Department of Agriculture, Food and Resources Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland

An estimated 85% of the world’s flowering plants depend on insects for pollination. Pollinator populations are shrinking due to 4Ps’ (i.e., Pesticide, Parasite, Pathogen, and Pollution). This decline is contributing to food insecurity worldwide. University of Maryland Eastern Shore (UMES) has developed a Pollinator Habitat Enhancement Plan (PHEP). The main objective of PHEP is to establish a flower-rich habitat within or around the UMES campus to increase the availability of pollen and nectar resources. Along with this main objective, this study designed two specific objectives: (1) To understand the population dynamics of arthropod pollinators and (2) to study host preferences of arthropod pollinators. The experiments were designed in randomized block design with three types of flowers (zinnia flower, sunflower, and mixed flowers) and three replications. The number of visiting pollinators were recorded in each plot and correlated with flower type. Sunflower plants were visited by significantly greater numbers of honey bees, bumble bees, soldier beetles, small bees and a few butterflies. In zinnia flowers, significantly fewer small bees and honey bees were recorded than in sunflower plants, but there was a higher number of butterflies and moths in zinnia flowers than in sunflower plants. The mixed flowers comprise both zinnia and sunflowers plus six other flower species. The population of the pollinator recorded in mixed flowers was two times higher than the population recorded in zinnia and sunflowers. The population dynamics and composition of the pollinator is positively correlated with the maturity of the flowers during the first season of the experiment. The experiment is in progress and will continue for the next two seasons.

Understanding the Population Dynamics of Arthropod Pollinators and their Host Preferences to Mitigate Food Insecurities at the UMES Campus

Ebony Jenkins*, Jocelyn Simmons¹, and Simon Zebelo, Ph.D.¹

¹Department of Agriculture, food and Resources Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland

1 Department of Entomology and Plant pathology, University of Maryland Eastern Shore, Princess Anne, Maryland

2 Department of Agriculture, Food and Resources Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland

An estimated 85% of the world’s flowering plants depend on insects for pollination. Pollinator populations are shrinking due to 4Ps’ (i.e., Pesticide, Parasite, Pathogen, and Pollution). This decline is contributing to food insecurity worldwide. University of Maryland Eastern Shore (UMES) has developed a Pollinator Habitat Enhancement Plan (PHEP). The main objective of PHEP is to establish a flower-rich habitat within or around the UMES campus to increase the availability of pollen and nectar resources. Along with this main objective, this study designed two specific objectives: (1) To understand the population dynamics of arthropod pollinators and (2) to study host preferences of arthropod pollinators. The experiments were designed in randomized block design with three types of flowers (zinnia flower, sunflower, and mixed flowers) and three replications. The number of visiting pollinators were recorded in each plot and correlated with flower type. Sunflower plants were visited by significantly greater numbers of honey bees, bumble bees, soldier beetles, small bees and a few butterflies. In zinnia flowers, significantly fewer small bees and honey bees were recorded than in sunflower plants, but there was a higher number of butterflies and moths in zinnia flowers than in sunflower plants. The mixed flowers comprise both zinnia and sunflowers plus six other flower species. The population of the pollinator recorded in mixed flowers was two times higher than the population recorded in zinnia and sunflowers. The population dynamics and composition of the pollinator is positively correlated with the maturity of the flowers during the first season of the experiment. The experiment is in progress and will continue for the next two seasons.

The Efficacy of a Field Collected Fungal Pathogen Against Green Stinkbug in Maryland

*Jocelyn Simmons¹, Ebony Jenkins¹, Rammohan Balusu², Simon Zebelo, Ph.D.¹

¹Department of Agriculture, Food and Resources Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland

2 Department of Entomology and Plant pathology, University of Maryland Eastern Shore, Princess Anne, Maryland
Poster Presentations Session I: Graduate All Disciplines (Abstracts P02 to P24)

Tuesday April 17, 2018 9:00 AM - 10:30 AM, SSC Ballroom

Program

An Assessment of Cybersecurity Practices in the US Farm and Food Systems

Muhammad H. Khan*, Caleb Nindo, Ph.D.
*Food Science and Technology PhD Program, University of Maryland Eastern Shore, Princess Anne, MD 21853.

The growth in US agriculture and food production sectors is mostly attributed to innovative technologies that combines the use of sensors, information systems, advanced machinery, and integrated management systems to optimize production. Previous studies indicate that most of these technologies were not designed with cyber secure functionalities. In addition, these technologies tend to be less capable to handle or alert users when compromised situations such as hacking occur. The extreme vulnerability of the Industrial Control Systems (ICS) and the Smart Farming Technology (SFT) platforms is critical particularly in terms of data collection through wireless sensor technology (WST). The goal of this study is to assess the emerging vulnerability/challenges (reliability, security and performance) of the big data collected through WST in food production particularly in smart farming. A literature review was conducted on technologies widely used in smart farming, food processing and packaging industries. Challenges related to ICS and SFT data were assessed. Lack of cyber risk awareness among industry operators, farmers and vendors; ICS protection, and insecure network systems are ideal situations for hackers to have access to those platforms through WST with a goal to corrupt data or disrupt operations of the food industries. There is a need to protect the ICS and sensitive data from hackers and prevent cybercrimes in US food industry and agricultural sector in general to extend the food safety and food defense culture to cybersecurity. The current policies lack specific guidelines on food safety-related cybersecurity issues. US farm businesses and the food industry need information and support to counter cyber-security threats in their operations.

Strongman and Strongwoman Athletes: Athletic Background, Training Styles, and Injury History

Andy Deck*, Laura Kaufman, Cristina Prince, Les Keniston, Ph.D.
Department of Physical Therapy, University of Maryland Eastern Shore, Princess Anne, MD 21853

The first World’s Strongest Man Competition was held in 1977 combining elements from other existing strength sports including powerlifting, highland games, and weightlifting, as well as historic traditional tests of strength and manhood. Since its inception, it has grown into a popular strength sport in the United States and other countries around the world. This sport welcomes athletes of all levels with different competitive divisions for men, women, teens, masters (age 40 and up), disabled, novice, amateur, and professional with multiple weight classes in each division, allowing athletes to compete with people of similar skill level and body weight. Since the sport of strongman and, now strongwoman, continues to expand at a rapid rate from its humble roots, there is a growing importance to understand who the athletes are that choose to train for and compete in strongman and strongwoman...
Functional Mobility Loss and Assistive Device Use in Amyotrophic Lateral Sclerosis
Marc McDonald, Gabriella Dejuliis, Michelle Gorman, Les Keniston Ph.D.
Department of Physical Therapy, University of Maryland Eastern Shore, Princess Anne, MD 21853

Amyotrophic lateral sclerosis (ALS) is a progressively fatal neurodegenerative disease that causes unpredictable declines in functional mobility. To date, little is known on how to slow or prevent this critical loss affecting both independence and quality of life. Examining possible avenues for improving patient mobility, the local patient population was studied using common measures found in natural tertiary care. The Timed Up and Go (TUG) and Gait Velocity (GV) tests are well established clinical tests of functional mobility and the Amyotrophic Lateral Sclerosis Functional Rating Scale - Revised (ALSFRS-R) is a universally utilized metric for quantitating disease progression. Using these measures, we retrospectively analyzed these values with respect to the onset of assistive device (AD) use to see if functional loss was slowed when an AD was used/present. Preliminary results show most patients receive an AD too late in the disease process to make a significant impact on functional mobility loss and that earlier prescription of an AD may prolong function.

Peak Expiratory Flow Rates in Patients with Amyotrophic Lateral Sclerosis Compared to Forced Vital Capacity as Predictors of Disease Progression
George Steer, Ph.D.,* Corey Nininger¹, Thomas Yoder, Ph.D.¹
¹Department of Physical Therapy, University of Maryland Eastern Shore, Princess Anne, MD 21853

Amyotrophic lateral sclerosis (ALS) is a chronic neuromuscular disease characterized by progressive weakness, decline in function, and eventual respiratory failure. The early detection of respiratory decline and the need for medical intervention is critical to optimal care of patients with ALS. It has been previously shown that forced vital capacity (FVC) <50% may be a predictor of need for mechanical ventilation, as well as death in ALS patients. However, FVC may not be as sensitive in the detection of pulmonary decline as peak expiratory flow rate (PEFR), which would lead to earlier therapeutic interventions such as inspiratory muscle exercise, or non-invasive mechanical ventilation. The primary aim of this retrospective analysis was to explore the relationship among spirometric data in patients with ALS over the progression of the disease. The study assessed the rate of change in percent of predicted values in PEFR, FVC, and forced expiratory volume in one second (FEV₁), and compared these rates of change. Comparison results over 29 months displayed an average rate of decline for FVC% predicted (-0.07208), PEFR% predicted (-0.09218), FEV₁% predicted (-0.09926). There is a greater rate of decline in PEFR% predicted and FEV₁% predicted vs. FVC% predicted over the course of disease progression. Non-parametric analysis of data showed that there was no difference between FVC% predicted and FEV₁% predicted (p=.063, n=26) while there was a difference between FVC% predicted and PEFR % predicted (p=.004, n=27) and FEV₁ and PEFR (p=.007, n=28). The results of this study suggest that PEFR% predicted and FEV₁% predicted values decline at a greater rate over time vs. FVC% predicted they may be more sensitive to detect disease progression and the need for therapeutic interventions compared to FVC% predicted. Although the rate of decline is similar between FEV₁% predicted and PEFR% predicted, their significant difference may be due to small sample size and other technical factors.
Evaluation of Metabolic Responses during Lipid Starvation of an Oyster Parasite Perkinsus marinus: A Potential Alternative Model for Lipid Metabolism.

Kristin Noell1, Joseph Pitula, Ph.D.2
Department of Natural Science, University of Maryland Eastern Shore, Princess Anne, MD 21853

A laboratory is interested in understanding the response of Perkinsus marinus, a protozoan parasite of oysters, to lipid starvation. Previous work has shown that this parasite is capable of synthesizing its own fatty acids, as well as acquiring them from their host. The study seeks to understand whether the capacity to synthesize fatty acids is a means to generate membrane components during lipid starvation, or if alternatively if this biosynthetic capacity is supplemental to growth in an infected host. As citrate can serve as a source of Acetyl CoA, the study is also investigating the role of cytosolic aconitase as a potential regulator in this process, as there is evidence for phosphorylation of this enzyme to favor citrate production. No one, to our knowledge, has delineated the role of cytosolic aconitase in fatty acid biosynthesis. First, the impact of cell growth under a known fatty acid inhibitor, Triclosan was examined. There was a time dose dependent shift when cells were exposed to higher concentrations at longer time intervals. Following this, the study reviewed what would happen when the cells underwent lipid starvation. Differential mRNA gene expression was performed in P. marinus, in which cells were starved of lipids for 11 days, as compared to lipid replete cells. There was not a noticeable upregulation of FAII-pathway enzymes for saturated fatty acid synthesis, although citrate synthase was upregulated approximately 3-fold, consistent with allosteric activation of acetyl CoA carboxylase-1. Polyketide polyunsaturated fatty acid synthase and delta 5/ delta 6 fatty acid desaturase were upregulated by approximately 2-fold. Surprisingly, a number of enzymes involved in beta-oxidation were upregulated, which contrasted with the expectation that free fatty acids from triglycerides would be directed towards salvage pathways for membrane synthesis. Consistent with this, ACC-2 was down regulated 2-fold. Interestingly, maltose acetyl transferase was also upregulated 2-fold, implying that acetyl units from beta-oxidation may be re-directed to sugar acetylation. The implications of this complex interplay will be discussed, along with future experiments to address lipid and sugar metabolites present in this parasite under lipid starvation conditions. Finally, the activity and phosphorylation status of aconitase-1 will be assessed under these conditions.

Floor Rise and Locomotion among Persons with Parkinson’s Disease

Dennis Klima, PT, PhD, DPT1, Frank Freijomil*, SPT1, Maurice Oliver*, SPT1, Jeremy Stewart*, SPT1
1 Department of Physical Therapy, University of Maryland Eastern Shore, Princess Anne, MD 21853

While considerable research has targeted gait, balance, and preventing falls in individuals with Parkinson’s disease (PD), less is known about the ability to rise from the floor in this population. The aims of this study were to 1) Examine the relationship between locomotion and physical performance tests and the timed supine to stand performance measure and to 2) Identify both the time required and predominant motor patterns utilized by persons with PD to complete to floor rise transition. A cross-sectional design was utilized. Twenty community-dwelling older adults with PD (mean age 74.8 +/- 9.5 years; 13 men) performed a standardized floor rise test and locomotion tests in a structured task circuit. Subject demographic and anthropometric data were also collected. Statistical analyses included descriptive statistics and Pearson Product Moment correlations. Fifteen subjects (75%) demonstrated the crouch kneel pattern and fourteen (70%) used an all-4’s strategy to rise to stand. The mean time to rise from the floor was 14.9 (+/- 7.6) seconds and slower than published norms for persons without PD. Nine subjects required the use of a chair to perform floor recovery. Supine to stand performance time was significantly correlated with locomotion and physical performance: Dynamic Gait Index (r = -0.66; p<0.002), Five Times Sit to Stand Test (r=0.78; p<0.001), Timed Up and Go Test (r=0.74; p<0.001), and gait velocity (r = -0.77; p<0.001). Findings of this study serve to enhance rehabilitation management for individuals with PD. Rising from the floor demonstrates concurrent validity with locomotion and physical performance tests. Floor recovery techniques can be incorporated in PD fall prevention initiatives in conjunction with bradykinesia and other symptom management.
Inhibition of Herpes Simplex Virus Replication in Differentiated Neuronal Cells
Faith O. Osinaga¹, Victor Hsia, Ph.D
¹Department of Pharmaceutical Science, University of Maryland Eastern Shore, Princess Anne, MD 21853

Herpes simplex virus (HSV), after primary infection of epithelial cells, can further infect neurons and establish latency within the sensory neurons of the trigeminal ganglia. The molecular mechanisms that establish viral latency and viral reactivation are unclear. Previous observations showed that HSV infection decreases the neuronal excitability and the viral replication can be suppressed by increased excitability. It was known that the function of Dynamin will decrease when neurons were excited. Dynamin is a GTPase involved in the endocytic pathways and plays a role in actin assembly and reorganization. This can infer that Dynamin may contribute to viral replication. To test the hypothesis that Dynamin participated in the regulation of viral replication, infection using a Dynamin inhibitor, Dynasore was performed. The current objective is to observe the HSV replication inhibition when treated with Dynasore. In vitro, studies were conducted on a differentiated hybrid neuronal cell line, ND7/23. Infectious assays were conducted at multiplicities of infection (MOI) of 0.1 and 0.5 at various conditions. Cells were treated with Dynasore to observe inhibition of HSV. To analyze the inhibition of viral replication, plaque assays were conducted. In addition, the viral RNA from the infectious assays were isolated followed by Real Time quantitative-Polymerase Chain Reaction (RT-qPCR) assays to study the viral gene expression under the influence of Dynasore. Results of viral replication inhibition can shed light on the possible involvement of Dynasore as an anti-viral therapeutic treatment.

Effects of Early Heat Conditioning at Different Ages on Heat Stress Indicators and Metabolic and Quality Parameters in Broiler Breast Meat
Anuradha Punchihewage Don¹*, Wendy Attuquayefio, Byungrok Min, Ph.D.
Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853

Earth's surface temperature has increased due to global warming and adversely affected broiler production. Environmental temperatures over 30 °C are considered heat stress condition for broilers. Heat stress causes quality degradation of chicken meat. Early heat conditioning (EHC) is a technique utilizing the perinatal epigenetic temperature adaptation to improve heat tolerance of broilers. It exposes broiler chicks at 3 to 7 days of age to high temperature (35-38 °C) for certain time period (up to 24 h). The objective of this study was to determine the effects of EHC at different ages on heat stress indicators and metabolic and quality parameters in broiler breast meat. A total of 180 1-day-old broiler chicks in 30 pens were randomly allotted to 5 treatments: 3 EHC groups (3, 5, and 7-day-old chicks exposed to EHC at 35 °C for 6 h), positive (no EHC) and negative (EHC for 5-day-old chicks). All treatment groups, except for negative control, were subjected to chronic heat challenge (day time 32 °C/night 25 °C) for the last 1 week. All birds were raised on a corn-soybean basal diet with free access to feed and water for 42 days. Growth performance (feed intake, weight gain, feed conversion ratio) was determined during broiler production. At day 43, breast muscles were collected at 0.25, 2, and 24 h after slaughtering. Breast muscles were analyzed to determine heat stress indicators (heat shock protein-70 and protein oxidation) and parameters of postmortem glycolysis (pH, adenosine mono-, di-, and triphosphate, adenosine mono phosphate activated protein kinase and glycogen potential) and meat quality (color, drip loss, water holding capacity, cooking yield, lipid oxidation, and texture). Growth performance and parameters of postmortem glycolysis and meat quality were not different among the treatments. These results could be due to high incidences of woody breast with white striping (more than 65 %) observed in all the treatment, which have been identified as major quality defects for broiler breast. The results suggested that the incidence of woody breast and white striping may not be affected by environmental stressors such as heat stress.

The Influence of the X-Factor on Golf Performance: A Systematic Review
Taylor Wiedel¹*, Diana Diep¹, Erica Potts¹, Paige Thomas¹, Michael Rabel, DPTI¹
¹Department of Physical Therapy, University of Mary-
The X-Factor is a golf term that describes the rotation range of motion between the shoulders and pelvis during the golf swing. The impact of the X-Factor on golf performance is not fully understood. Golf instructors/coaches use different motor learning concepts and movement strategies, such as X-Factor enhancement, to facilitate a more effective golf swing. This systematic review analyzes current research evidence assessing the influence of the X-Factor on golf performance to determine whether this physical characteristic should be considered during training or rehabilitation programs. An electronic search of Medline, CINHAL, and PubMed was performed for all years up to 2017. Title and abstract, full-text, quality review, and data synthesis were performed by four independent reviewers. Studies were selected based on a predefined inclusion criteria. An initial search identified 105 studies. After applying the inclusion criteria, a total of 16 studies were retained for further analysis. The methodological quality of articles included were at the Sackett’s level 2A and 2B. A positive relationship was identified between the X-Factor and golf performance measures including: ball velocity, driving distance, swing power, and club-head speed. In addition, the X-Factor was found to be greater in golfing professionals as compared to lower skilled golfers. The generalizability of these findings is limited due sample gender inequality. Male golfers were primarily studied and the methods used to measure the X-Factor varied among studies. The X-Factor seems to have positive associations with the performance variables studied in highly skilled right-handed male golfers. Further research is necessary to better understand the role of the X-Factor in female golfers and in those using a left-handed swing strategy. Interventions designed to improve the X-Factor should further be investigated.

Falls are a major cause of disability nationally. Fall episodes are linked to both fracture and fear of falling. The purpose of this study was to assess the effectiveness of a community-based fall prevention program, Stepping On, using seven student physical therapists in six rural senior centers on the Lower Eastern Shore of Maryland (Worcester, Wicomico, Somerset, and Dorchester Counties). Physical therapy students partnered with older adult participants to master exercises, strategize floor recovery techniques, and identify community safety barriers. Participants developed a personalized falls action plan. A descriptive survey tool assessed falls efficacy and program effectiveness. Statistical analyses included descriptive statistics and Chi-square frequency analyses. Significance was set at the P < 0.05 value. One hundred and fifty-four older adults (Mean age: 76.1± 8.5; BMI 29.2± 6.5 kg/m²) completed Stepping On at six locations with physical therapy student coaches. Most were female (86.4%), lived alone (50.0%) and were taking four or more medications (74%). Thirty-eight participants (24.7%) had fallen over the past year. Several elders had sustained a critical fall event and were not able to arise from the floor. Subjects who lived alone were more likely to have fear of falling (p = 0.05). Eighty-eight (57.1%) subjects noted they had less fear of falling following the community-based intervention; moreover, most subjects reported having an improved plan to arise from the floor after a fall (74.7%) and a better understanding of falls and their causes (83.1%). Fall action plan surveys cited the use of medical emergency alert systems and cell phones. Seniors commented that sit-to-stand (34.7%), tandem walking (16.2%), and hip abduction (10.9%) were the most beneficial exercises. Student partners with seniors afforded focused attention to master fall prevention strategies. Following a community-based fall prevention program, seniors have a better understanding of fall causes and have a plan to seek floor recovery assistance.
Prostate cancer (PCa) has been the most frequently diagnosed cancer and the second leading cause of cancer deaths among American men. African American (AA) exhibit the higher rate of PCa morbidity and mortality compared with Caucasian/European American (EA). In addition to socioeconomic and environmental factors, accumulating evidences suggested that biologic and genetic factors may account for part of the observed disparities and influence the PCa recurrence and aggressiveness in AA population. MicroRNAs (miRNAs) are a class of non-coding endogenous RNAs that have been identified to play a role in variety types of cancers. In PCa, miRNA deregulation has been implicated in tumor initiation and progression through the regulation of the expression of target genes involved in multiple signaling pathways, including the ones contributing to tumor aggressiveness such as treatment resistance and metastasis development (i.e. trough Focal adhesion, Insulin, P53, and mTOR signaling pathways). This study is designed to investigate/identify miRNA targeting pathways and evaluate the functional roles of the candidate miRNA-mRNA pairings in PCa aggressiveness. Furthermore, PCa cell lines (PC-3, LNCaP, VCaP, DU-145, RC-77, and MD PCa 2b) along with clinical samples (derived from AAs and EAs) were employed to validate the expression profiles of the candidate miRNA-mRNA pairings. From our initial analysis, 10 miRNAs (hsa-miR-34a, hsa-miR-378a-5p, hsa-miR-130b, hsa-miR-96-5p, hsa-miR-99b-5p, hsa-miR-125b-2p, hsa-miR-572, has-miR-133a, has-miR-542-5p and has-miR-758) were enriched or depleted in AA PCa, which in turn contributes to differential activations of several oncogenic signaling pathways in AA PCa and EA PCa. In summary, our preliminary data suggest that miRNA-mRNA regulatory network may play a critical role in the PCa aggressiveness and drug resistance in AA patients, promoting the PCa disparities between AA and EA PCa.

Undergraduate Poster Presentations

The Effect of Inorganic Nitrogen Enrichment on Urease Activity within Agricultural Drainage Ditch Sediments

Skye Blake, Sabrina Klick, Eric May, Ph.D.
Department of Natural Sciences, University of Maryland

Agricultural drainage ditches are important management targets to reduce nutrient pollution entering the Chesapeake Bay. Fertilizer in the form of urea-ammonium-nitrate is commonly used on the Eastern Shore of Maryland, and often contains added chemicals that may interfere with bacterial nitrogen cycling. Gaps of knowledge exist regarding the fate, transport, and bacterial cycling of urea nitrogen from agro-ecosystems to nearby water systems. This project will focus on the enzyme urease which is responsible for the carrying out the reaction of urea to ammonium and carbon dioxide. Ammonium produced from this reaction can be used for the production of nitrate through nitrification. Urease activity will be examined from agricultural drainage ditch sediments collected from the UMES farm. Detection of urease activity will be carried out using an enzymatic assay. Drainage ditch sediments will be treated with deionized water, ammonium, and nitrate to investigate if urease activity is affected by added inorganic nitrogen. Results from this experiment will be used to design additional experiments to further understand how different environmental conditions and nitrogen enrichment affect urease activity. A better understanding of urea cycling will help contribute to the improvement of best management practices as urea based fertilizers become more prevalent in the future.

Use of Shellfish Waste to Obtain Chitin for Reversible Carbon Dioxide Uptake.

Alexa Brady†, Katherine Lipsius‡, Benjamin Barnes‡, Preeti Sharma†, Victoria V. Volkis, Ph.D.†
†Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853

Chitin is a tough but flexible polysaccharide that is stable in a wide range of environments, and is compatible with a number of minerals to form rigid structures such as shells. On the east coast shells are found everywhere. In 2014, 11,228 metric tons of crab was harvested locally, globally, 6 million tons of shrimp was harvested. All of these shells are just a waste to the restaurant industry. In such a way, shells are an inexpensive untapped source of chitin. Recently it has been shown that chitin and its derivatives can be effective sorbents in reversible and biocompatible carbon capture. Discovering a reversible way to capture carbon dioxide has become a modern desideratum. The complex relationship between the depend-
The Influence of Temperature on the Antioxidants Capacity of Juiced Aronia Mitschurinii

Taryn Jones, Kierra Smith1, Andrew Ristvey, Ph.D.2, Victoria Volkis, Ph.D.1†
1 Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD
2 University of Maryland Extension, Wye Research & Education Center, Queenstown, MD

Aronia Mitschurinii, also known as the black chokeberry, is a fruit-bearing shrub which is native to Maryland. The aronia berry has a dark purple color which can be attributed to the berry’s extremely high content of the antioxidants called anthocyanins. Antioxidants are an important nutrient needed for capturing naturally formed free radicals in living organisms, and prevention of oxidation and cancer formation. Aronia’s reputation of being a super berry entices small farms to use it as a perspective specialty crop. The berry’s high content of polyphenols also makes it a likely ingredient in several new products such as, organic teas and vitamin supplements. All food applications of any fruit require high temperature pasteurization and sometimes also cooking as a major steps during the fruit processing. There are three major effects higher temperatures can have on antioxidants; isomerization, decomposition or the loss of water. Recently we have found that at 120 °C more than half of antioxidants are decomposed already after the first 5 minutes of the process. However, at 80 °C more than 85% of antioxidant content is safe even after two hours of heating. Yet typically such temperature is not high enough for effective pasteurization. There is a need to explore more temperatures and conditions between 80 and 120 °C to determine the optimal processing procedures. Here we present detailed measurements and analysis of anthocyanin, flavonoids, polyphenol content of Aronia Mitschurinii as a function of the variation in temperature and the time exposed to these temperatures in the interval of 85 – 100 ° C. The next step will be an antioxidant profiling using LCMS.

Isolation and Characterization of Essential Oils in Medicinal Herbs, Plants, And Algae; and Their Applications in Pest Control.

Mark Joseph1*, Carson Cohen2*, Simon Zebelo, Ph.D.1, Victoria V. Volkis, Ph.D.1†
1 Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853
2 Holy basil (Ocimum tenuiflorum), Argan (Argania spinosa) and various other herbs and plants are known for their cosmetic and medical use. While there are several studies that show the chemical compositions of these oils and their benefits, there are limited studies on the insecticidal effects. As well, many of these plants are originally grown in countries of Africa and Asia and currently are on trial to be cultivated in US. Due to difference in climate and soil, plants grown in US typically would have different oil composition as compared to countries of their origin. For potential applications, the evaluation and comparison for those plants is needed. Here, we hypothesize that the essential oils from Holy basil, argan, Aronia mitchurinii, and other medicinal plants and herbs will have either deterrent, attractive or repellent effects on insects. To test this hypothesis, we first isolate essential oils by wet distillation and/or extraction and characterize their chemical compositions of these oils and their benefits, there are limited studies on the insecticidal effects. As well, many of these oils by wet distillation and/or extraction and characterize their composition using GCMS and LCMS, as well as UV/Vis spectroscopy. We then compare results with literature data for similar plants grown in its natural habitats. Then, in order to test the biological effect of the essential oils, a bioassay system is implemented with controlled pest interference and oil concentrations. Our preliminary tests have shown that essential oils from Holy basil leave extracts, that showed mostly monoterpenes and sesquiterpenes on GCMS, demonstrated high deterrence effect against Japanese Beetles with less leaf area damage and high mortality of the beetles observed. This in essence means that Holy basil and Argan oil extracts might have potential for pest control in organic produce production.

Using Hydrolysis to Increase Effectiveness of Chitin for Reversible Carbon Dioxide Capture
Marine biofilm formation is the accumulation of micro/macro organisms and polymerized products of their metabolism on submerged and/or wet objects. The main environmental trait of this process is spreading bacteria from one underwater habitat to another, and barnacle attachment to bottom of ships. The latter especially affects cargo industry and military. Marine biofilm formation results in significant increase of fuel consumption and damage to ship hulls, petroleum platforms and other under-water objects. To slow the growth of biofilm formation, antifouling paint is applied to the bottom of the hull of a ship or boat. While it can decelerate the growth of the organisms, traditional antifouling composites used contain tributyltin (TBT), which is an unstable and toxic compound. Use of this additive is banned in many countries including US. In this project extracts from Aronia Mitschurini, a super-berry that contains 15 times more antioxidants than assai berry, as well as holy basil, argan oil and some other extracts from medical herbs, algae and sponges are studied as potential organic substitutes for Tributyltin (TBT). Since 2006, aronia berries and many of herbs in this study are cultivated in about 20 Maryland small farms. Using those crops for non-food related applications relevant to military would help to make small farms more sustainable and increase their revenues. The evaluation of crop has three main steps: (1) extraction and characterization of extract with UV/Vis, LCMS, FTIR and other methods; (2) blending with polymers and sample preparation; (3) antifouling tests and surface analysis and comparison. Preliminary results obtained so far will be presented in this poster.

Dye-Sensitized and Innovative Perovskite Solar Cell
Kanieka Neal*, Kaushik S. Das, Ph.D., Yan Waguespack, Ph.D.
*Department of Natural Science, University of Maryland, Eastern Shore, Princess Anne, MD 21853

Renewable energy sources have paved the path to modern technology and future innovations. In previous studies, dye-sensitized solar cells have been made and experimented with TiO₂ ZnO, as well as anthocyanin to obtain and increase solar to electric conversion efficiency. Some results and observations from these combinations have been obtained. To further research, this study will be experimenting with perovskite solar cells because it has become a target for enhancing efficiency. Perovskite is calcium titanate mineral known to be a flexible and durable material for advancing photovoltaic applications, however, enhancing stability and high performance has become a challenge. The objective of this study is to create a perovskite
Dye Sensitized Solar Cells (DSSC)
Joshua Orebiyi, Kaousik S. Das, Ph.D.
Department of Natural Science, University of Maryland Eastern Shore, Princess Anne, MD, 21853

In today’s modern society, energy has become an imperative part of daily life. It is incorporated in every aspect of our lives. As the population of the world increases, so does the demand for energy. In the next 30 years worldwide power consumption is expected to double. Mainstream power sources such as fossil fuels and nuclear power have proven to produce substantial amounts of energy but at a cost. Not only has fossil fuels largely contributed to pollution in our atmosphere but it is also a limited resource. With an increase in demand in energy in the future, the option of renewable energy sources has begun to become more important, and the most feasible choice of them is solar energy. Dye sensitized solar cells are a type of thin film solar cell used to convert sunlight into electrical energy through means different than conventional solar cells. Dye sensitized solar cells are made from materials that are both biocompatible and biodegradable. This study used anthocyanin which are dyes found in common berries like blueberries, blackberries, and strawberries and harness their light absorption capabilities to create solar cells. The purpose of these solar cells is to eliminate the use of conventional silicon solar cells by creating solar cells that are environmentally friendly and that can produce a higher efficiency rate of converting sunlight into electrical energy. In this work, a large number of variations on DSSC fabrication parameters were explored. The main goal was to produce cells and compare photovoltaic conversion efficiency (PCE) and try to maximize the percentage of solar energy that is converted into electrical energy. The results show that impact of plasma etching was shown positive in the case of pure ZnO with an efficiency of .02%, but detrimental in the case of composited ZnO and TiO2 semiconductor. The impact of semiconductor thickness was also explored by scaffolding experiments. It was shown that efficiency was optimized at four scaffolds; with 2 scaffold yielding .02%, 3 scaffold yielding .017%, 4 scaffold yielding .05%. Further results from scaffolding show a decreased dramatically at eight scaffolds yielding 7.45 x 10^-4%. It was shown that TiO2 composited with ZnO of different morphologies resulted in mixed efficiency, with ZnO nanowires outperforming ZnO nanoparticles. Finally, it was shown that blueberry dyes (.461%) resulted in a much higher PCE than did blackberry-based dye (.22%). The experiment has shown great results but further research will be done to continue the improvement of the PCE of the DSSC and explore other combinations of anthocyanin and semiconductor materials that might prove to increase our already promising results. The research is funded by the Louis Stokes Alliance for Minority Participation (LSAMP).

Benchtop Photolithography and High Resolution Photomask Design
Habilou Ouro-Koura*, Kaousik S. Das, Ph.D.
Department of Natural Science, University of Maryland Eastern Shore, Princess Anne, MD, 21853

Lab on a chip is a developing field in nanoscience which requires controlled topographic modification of substrate surfaces. Photolithography is a printing technique used in changing surface morphology and topography, manufacturing of integrated circuits, and microfluidic channels at small scale. Photolithography is usually a sophisticated technique which needs clean-room facility and high resolution photomask designing. This presentation will report a simple technique by which high resolution photo-mask were designed using heat treated polystyrene plastic (Shrinky Dink) to achieved fabrication of microlithographic patterns on a silicon wafer. Different techniques of photolithography were tested and optimized for the best results. Microfluidic channels using this technique were also created with PDMS mould. The fabricated lithographic patterns will be characterized by an Atomic Force Microscope (AFM).

Urease Containing Bacteria in Agricultural Drainage Ditch
Sediment Bordering a Fertilized and Non-Fertilized Crop Field
Datonya Price, Sabrina Klick, Joe S. Pitula, Ph.D., Eric B. May, Ph.D.
Department of Natural Science, University of Maryland Eastern Shore, Princess Anne, MD, 21853
Agricultural drainage ditches are targets for best management practices to reduce downstream nutrient pollution because they link crop fields to adjacent waterways. Application of urea-ammonium-nitrate (UAN) fertilizers often contain urease inhibitors, and may influence nitrogen cycling by bacterial communities within agricultural drainage ditches. The urease enzyme is responsible for converting urea into ammonium, an important substrate for nitrification. It is unclear how application of urease inhibitors on the crop fields affects urease containing bacteria within the agricultural drainage ditches. Therefore, water and sediment samples were collected on June 6th and July 11th in 2017 from two ditches bordering a fertilized and non-fertilized crop field, located on a private farm in Somerset County, MD, USA. Environmental parameters from the surface water of the ditches were measured with an EXO multi-parameter sonde. Water samples were analyzed for concentrations of urea-N, ammonium-N, and nitrate-N. Sediment samples were used to extract environmental DNA, and then used to target the urease gene. A clone library was constructed from each sample to compare the dominant urease containing bacteria.

Extraction of Antioxidants from Aronia mitschurinii Juice Using Macroporous Resins

Jasmine Turner¹, Gabrielle Mister¹, Breann Hrechka¹, Andrew G. Ristvey, Ph.D.², Victoria V. Volkis, Ph.D.¹

¹Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853
²University of Maryland Extension, Wye Research & Education Center, P.O. Box 169, Queenstown, MD 21658-0169

Antioxidants play a vital role in the human body by defending cells from damage caused by free radicals, highly reactive products of oxidation reaction; a major source of antioxidants are fruits, berries and vegetables. One berry in particular, Aronia, has shown a significant content of hydrophilic antioxidants in current research. The Aronia berry, also known as the black chokeberry, is a North American shrub containing a potent blend of antioxidants including anthocyanins, polyphenols, and flavonoids. Previous research has shown that macroporous resins (ex. XAD761, FPX66, and XAD1180) are effective in extracting the optimum concentration of anthocyanins and polyphenols from aronia. Preliminary results showed that FPX66 was the most effective sorbent for anthocyanins and flavonoids. The resin also had the highest total recovery for both antioxidants. In respect to desorption, FPX66 was the second best at releasing the antioxidants and is preceded by XAD1180. This presentation will be reporting determination of the limit of detection by diluting method using antioxidant standards, evaluation of total polyphenols before and after the extraction, as well as method optimization.

Product Customization Design Presentations

Human Ecology Department, University of Maryland Eastern Shore, Princess Anne, MD 21853

Adviser: Dr. Bridgett Clinton-Scott

Undergraduate Students

- Morgan Barnes
- Shakina Braxton
- Briana Brooks
- Tanise Edwards
- Quintaya Forchion
- Ashlee Jackson
- Armani Lewis
- Kayla Mosegi
- Gabriel Moody
- Donovon Mundy
- Brenda Oppong-Boateng
- Devin Outten
- Joshua Pollard
- Brittany Washington

Digital textile printing is an evolving technology in the apparel and textiles industry that has combined advances in fabric with dye chemistry to produce complex images on fabric. These digitally engineered fabrics are comprised of millions of colors and can be quickly printed using a sublimation printer and heat press. Using digital textile print technology 14 fashion merchandising students in the Human Ecology Department at the University of Maryland Eastern Shore (UMES) created customized fabrics. Inspiration for the textile designs came from artwork created by art students in the Department of Fine Arts at UMES. The fashion merchandising students used their fabric to create a variety of garments including dresses, skirts, leggings, and tops. This product customization design project enables fashion merchandising students to benefit from the latest technology in textile design and it helps them put theory into practice. This creative design project has also equipped students with cutting-edge technical skills.
necessary to meet the demands of the every changing and evolving industry of apparel and textiles.

The Influence of Mobile Retail Application Functions on Consumer Online Interactions
Shakinah Braxton
Adviser: Dr. Bridgett Clinton-Scott
Human Ecology Department, University of Maryland Eastern Shore, Princess Anne, MD 21853

This research analyzes the influence of mobile retailing that has an impact on consumer purchase power by examining the different dynamics that encourages retailers to develop mobile functions based on consumers’ behaviors. This will enable retailers to gain more customer interaction within these apps. The importance of this research is to identify factors or functions that cause customers to interact with these mobile retail applications in a way that benefit retailers. Studies have shown that most consumers use retailing apps as a way to better their shopping experience, obtain information, or gain benefit. This study utilized a structured observational approach to collect data through an array of comparison charts and graphs showing percentages in the changes of mobile retail app profits between different retailers, different interactions between mobile retailing, mobile websites and online shopping, and mobile retailing aesthetics. Conducting this research will help retailers choose better mobile retailing functions that will attract consumer’s attention and persuade them into becoming more active within the application. Methods identified in this study, were also tested amongst popular retailers in order to prove that retailer interaction within mobile applications are just as important as consumer interaction within mobile applications. The more advertisements, special promotions, sales, coupons, and other special features are concluded to be the best way to gain consumer interactions. Retailers that use the mobile retailing method to induce consumer profit will have to be dedicated in testing and adding new functions to their retailing apps in order to maintain consumer loyalty.

Retail Mobile Apps: An Emerging Retail Trend
Alexia Moye
Adviser: Dr. Bridgett Clinton-Scott
Human Ecology Department, University of Maryland Eastern Shore, Princess Anne, MD 21853

This paper explores retailers’ mobile application functions and level of consumer interaction on mobile applications. The main purpose of this research paper was to discover factors that would help retailers use their mobile more effectively to engage with consumers. An observational study was performed to examine the mobile application usage of six fashion retailers to determine its impact on retailer-consumer interaction via mobile applications. This research topic will assist retail professionals in understanding the influence of mobile retailing on their business.

Impact of Social Media on Fashion Retailers: Online and Department Stores
Brenda Oppong-Boateng
Adviser: Dr. Bridgett Clinton-Scott
Human Ecology Department, University of Maryland Eastern Shore, Princess Anne, MD 21853

This research explores the impact of social media on online-only fashion retailers and department stores. Social
media has become a huge platform for companies to interact with their consumers, as well as market their products. The major purpose of this research paper is to explore the factors that maybe impacting or hindering consumer interactions within online and department stores on social media platforms. An observational study was performed to examine a select group of online and department stores to determine if fashion retailer’s particularly online stores are more likely to have greater consumer interactions than department stores because online stores are able to engage in more online consumer interactions than department stores. This research topic will help retail professionals better understand the influence of social media platforms and consumer interactions.

The Influence of Social Media on Consumer Decision Making
Daysia Taylor
Adviser: Dr. Bridgett Clinton-Scott
Human Ecology Department, University of Maryland Eastern Shore, Princess Anne, MD 21853

Social media interaction has grown tremendously in recent years and it has become a platform for many businesses to share their products and services, while building one’s clientele with the method of customer-to-noncustomer interaction. This paper explores the relationship between social media interaction and the retailing industry by analyzing consumer behavior in terms of their decision-making. The major purpose of this research paper is to explore the difference between boutiques and retail stores in terms of their social media interaction with consumers. This study used an observational approach to examine how social media affects how consumers view different fashion brand and interact with them through social media. With the research presented, professionals will be able to better understand the influence social media has on consumers and how they perceive their business.

Monetary Presentations

Streaming Music: Is YouTube Still Valuable Enough For Musicians to Increase Viewership
Marcus Baldwin*,
Department of Business, Management, and Accounting,
University of Maryland Eastern Shore, Princess, MD 21853

For years, YouTube has been the go to place for music & entertainment online. Millennials agree that YouTube is the one stop shop for video consumption of all kinds. This study will research what needs users are satisfying when using streaming sites; especially with respect to music. The purpose of this research is to discover what features are popular for attracting users and more importantly, how an independent musician can promote viewership. With reality and stress being major factors in our everyday lives, people use coping mechanisms to get through the day and YouTube may be one of them. Research shows that listening to music also relieves stress. Streaming options will be identified while comparing the benefits and challenges to, and motives of avid users. There are many advanced users who are able to monetize income from YouTube. The research will focus on the usage behavior of streaming music concentrating on 15-25 year olds. YouTube will be analyzed in order to diagnose viewership questions with an expert opinion and outlook. This research will be based on qualitative and quantitative methods using SurveyMonkey to get a feel of how much the average user looks to YouTube to find new music. There will be a discussion of findings and results. This study was conducted as a part of the course requirement for Marketing Research and guided by Dr. Monisha Das.

UMES Federal Reserve Challenge Team
Presentation on Federal Open Market Committee Deliberations
Monisha Das*, Mohammad Ali, Vichet Sum, Rexford Abaidoo, Issac Marcelin, Leesa Thomas-Banks, Grayson K. Trower, Briyanah M. Harris, Kayode B. Akinbode, Alese D. Brown, Awad M. Hassan and
Eniiyinola M. Okulate
Department of Business Management and Accounting,
University of Maryland, Eastern Shore, Princess Anne, MD
21853

The UMES Federal Reserve Challenge Team will present extensive data analysis about the U.S. macro economy, the Federal Reserve System and the implementation of monetary policy. The team will debate upside and downside spillovers of the current monetary policy, its stance, impact of fiscal policy, the status of aggregate demand, and labor market conditions. Our 2017 team is made up of undergraduate Business and Computer Science Majors who analyze economic and financial data and formulate monetary policy recommendations modeling the Federal Open Market Committee. Our team role plays decision makers who are FOMC Governors and Presidents: Janet Yellen, Stanley Fischer, James Bullard, Esther George, Daniel Tarullo and William Dudley.

Ashanti A. Price*
Department of Business Management and Accounting,
University of Maryland Eastern Shore, Princess Anne, MD
21853

African-American women with the age group of 15-25 turn to online media to look for solutions to cosmetic problems by using makeup and skincare advice and products. Not much information exists regarding online minority subscriber behavior. This research study explores questions regarding cosmetic needs of our sample and how these needs are satisfied. Research questions that will be looked into include: why YouTube is preferred over other media, what makeup problems YouTube solves, which YouTube content creators appeal to this demographic, and what is the profile of the heavy users of these online media channels. Recommendations will be made to improve the way cosmetic companies and skincare providers can appeal to these subscribers. Can these online media stars potentially increase the reach of these companies through YouTube? Can these cosmetic entrepreneurs monetize income from YouTube? We examine secondary data and published reports on subscriber behavior. Our primary research will be based on qualitative and quantitative methods using focus groups and survey methods. Findings and results using regression analysis will be discussed. This study was conducted as a part of the course requirement for Marketing Research and guided by Dr. Monisha Das.

Monisha Das*
Department of Business Management and Accounting,
University of Maryland, Eastern Shore, Princess Anne, MD
21853

Social media companies such as Google, Facebook and Twitter have become major channels for news, advertising, commercial and personal speech. We use a debate format to explore what the First Amendment protects and whether all speech online is protected. If there are deviations such as fake news, misleading advertising and other types of speech that are not protected by the First Amendment but seem to appear regularly on social media, should these companies be regulated as regular media companies are? Where do we draw the line? Using secondary data, we research the question of regulation or self-regulation. The findings will be presented in debate format.

Ashanti A. Price*
Department of Business Management and Accounting,
University of Maryland Eastern Shore, Princess Anne, MD
21853

African-American women with the age group of 15-25 turn to online media to look for solutions to cosmetic problems by using makeup and skincare advice and products. Not much information exists regarding online minority subscriber behavior. This research study explores questions regarding cosmetic needs of our sample and how these needs are satisfied. Research questions that will be looked into include: why YouTube is preferred over other media, what makeup problems YouTube solves, which YouTube content creators appeal to this demographic, and what is the profile of the heavy users of these online media channels. Recommendations will be made to improve the way cosmetic companies and skincare providers can appeal to these subscribers. Can these online media stars potentially increase the reach of these companies through YouTube? Can these cosmetic entrepreneurs monetize income from YouTube? We examine secondary data and published reports on subscriber behavior. Our primary research will be based on qualitative and quantitative methods using focus groups and survey methods. Findings and results using regression analysis will be discussed. This study was conducted as a part of the course requirement for Marketing Research and guided by Dr. Monisha Das.

Monisha Das*
Department of Business Management and Accounting,
University of Maryland, Eastern Shore, Princess Anne, MD
21853

Social media companies such as Google, Facebook and Twitter have become major channels for news, advertising, commercial and personal speech. We use a debate format to explore what the First Amendment protects and whether all speech online is protected. If there are deviations such as fake news, misleading advertising and other types of speech that are not protected by the First Amendment but seem to appear regularly on social media, should these companies be regulated as regular media companies are? Where do we draw the line? Using secondary data, we research the question of regulation or self-regulation. The findings will be presented in debate format.
GRADUATE COUNCIL MEMBERS
2015-2017

The following individuals have been elected to serve on the 2015-2017 Graduate Council:

School of Agricultural and Natural Sciences
Dr. Salina Parveen
Dr. Joseph Pitula
Dr. Jurgen Schwarz
Dr. Eric May
Dr. Paulinus Chigbu- Dean Appointee

School of Business and Technology
Dr. Edward Chapin
Dr. I.K. Dabipi
Dr. Monisha Das
Dr. Daniel Seaton

School of Education, Social Science, and the Arts
Dr. Prince Attoh
Dr. Cheryl Bowers
Dr. Kimberly Poole-Sykes
Dr. Lily Chi-Fan
Dr. Derry Stufit- Dean Appointee

School of Pharmacy and Health Professions
Dr. Patrice Jackson-Ayotunde
Dr. Adel Karara
Dr. Madan Kharel
Dr. Miguel Martin-Caraballo
Dr. Maryam Rahimi

Ex-Officio Members
Dr. Juliette Bell, President
Dr. Kimberly Whitehead, Interim Provost and Vice President for Academic Affairs
Dr. LaKeisha Harris, Interim Dean of the Graduate School; Chair of the Graduate Council

“The Graduate Council consists of members of the Graduate Faculty elected by the Assembly, as well as appointed and ex-officio members. It is charged with formulation of policies and procedures for the graduate programs at UMES. These include, but are not limited to, admission standards, review of new graduate programs and courses, and review of the UMES Graduate Faculty membership.” Graduate Catalog

www.umes.edu/grad

Graduate Student Representative to be appointed by the School of Graduate Studies Dean
2015-2017 Graduate Council Committees

Dr. Lakesha Harris, Chair

Academic Standards/Curriculum Committee

Dr. Edward Chapin, Chair
Dr. Cheryl Bowers
Dr. Prince Attoh

Curriculum Committee

Dr. Paulinus Chigbu, Chair
Dr. Miguel Martin,
Dr. Ibibia Dabipi

Graduate Faculty Committee

Dr. Derry Stufft, Chair
Dr. Adel Karara
Dr. Joseph Pitula

Graduate Council Research Committee

Dr. Eric May, Chair
Dr. Patrice Jackson-Ayotunde, Co-Chair
Dr. Lily Tsai
Dr. Monisha Das
Dr. Kimberly Poole-Sykes
Dr. Madan Kharel

Committee on Student Life

Dr. Maryam Rahimi, Chair
Dr. Salina Parveen
Dr. Daniel Seaton
Mr. Zoe Johnson, Graduate Student Representative
Graduate Education Week Committees

Convener
Dr. LaKeisha Harris
Interim Dean, School of Graduate Studies

Program
Ms. Amelia Potter, Chair, Graduate School Research Symposium Committee 2017
Department of Natural Sciences, UMES
Ms. Wele Elangwe, School of Graduate Studies, UMES
Dr. Prince Attoh, Associate Professor, Organizational Leadership
Dr. Patrice Ayotunde-Jackson, Associate Professor, Department of Pharmaceutical Sciences
Dr. Charles Baldwin, Associate Professor, Department of Education
Dr. Tracy Bell, Assistant Professor, Department of Natural Sciences
Dr. Tyrone Chase, Assistant Professor, Organizational Leadership
Dr. Bridgett Clinton, Assistant Professor, Department of Human Ecology
Dr. Maurice Crawford, Associate Professor, Department of Natural Sciences
Dr. Monisha Das, Associate Professor, Department of Business Management and Accounting
Dr. Kingsley Ejiogu, Assistant Professor, Department of Criminal Justice
Dr. Dennis Klima, Associate Professor, Department of Physical Therapy
Ms. Jamila Johnson, Coordinator, PGA Golf Management
Dr. Thomas Loveland, Associate Professor, Department of Technology
Dr. Caleb Nindo, Associate Professor, Department of Agriculture Food and Resource Sciences
Dr. Leslie Santos, Assistant Professor, Department of Rehabilitation Services
Dr. Terry Smith, Associate Professor, Department of English and Modern Languages
Dr. Victoria Volkis, Associate Professor, Department of Natural Science

Registration
UMES School of Graduate Studies Staff
Ms. Wele Elangwe, Student Services Director / Equity and Compliance Officer
Mr. Preston Gross, Admissions Coordinator
Ms. Angela Young, Administrative Assistance

UMES School of Graduate Studies Student Interns
Ms. Princess Botu
Ms. Caitlyn Cherry
Mr. Darius Cornish
Mr. Zoe Johnson
Mr. Jesu Raj Pandya
Faculty Awards

Dr. Paulinus Chigbu, Chair, Graduate School Faculty Excellence Awards Committee
Department of Natural Sciences, UMES
Dr. Victor Hsia, Department of Pharmacy, UMES
Dr. Maryam Rahimi, Department of Rehabilitation Services, UMES
Dr. Derry Stufft, Department of Education, UMES
Dr. Salina Parveen, Department of Agricultural, Food and Resource Sciences, UMES
Dr. Joseph Arumula, Department of Technology, UMES
Dr. Emmanuel Onyeozili, Department of Criminal Justice, UMES

Information Technology

Mr. Jeremy Townsend, Information Technology, UMES
Mr. Joe Smith, Information Technology, UMES
Mr. Eric Williams, Information Technology, UMES
Mr. Darius Cornish (Graduate School Webpage and Symposium Webpage)
Mr. Jesu Raj Pandya (Graduate School Webpage and Symposium Webpage)

Logistics and Support Services

Mr. Eric May, Department of Natural Sciences, Logistics
Ms. Amelia Potter, Department of Natural Sciences, Events Sessions Organizer/Program
UMES Honors Program, Dr. Michael Lane, Director
Louis Stokes Alliances for Minority Participation (LSAMP), Dr. Tracy Bell, Coordinator
Minority in Agriculture, Natural Resource and Related Sciences (MANNRS)
Graduate Students Association
Ms. Jhamyllia Rice, Department of Natural Sciences, UMES
Ms. Cyanna Scott, Department of Natural Sciences, UMES
Ms. Olivia Skeen, Department of Natural Sciences, UMES

Program and Book of Abstracts

Dr. Thomas Loveland, Reviewer, School of Business and Technology, UMES
Dr. Terry Smith, Editor, Department of English and Modern Languages, UMES
Ms. Amelia Potter, Producer, Department of Natural Sciences, UMES
Ms. Wele Elangwe, Reviewer, School of Graduate Studies, UMES

Judges

Dr. Pince Attoh, Committee Chair, Department of Social Sciences, UMES
Dr. Tyrone Chase, Committee Co-Chair, Department of Social Sciences, UMES
Indicated overleaf by sessions
Moderators

Dr. Victoria Volkis, Committee Chair, Department of Natural Sciences, UMES
Dr. Dennis Klima, Committee Co-Chair, Department of Physical Therapy, UMES
Indicated overleaf by sessions

Volunteers

Mr. Zoe Johnson, Volunteers Coordinator, School of Graduate Studies, UMES

UMES Graduate Students:
 Ms. Stephanie Hallowell, Department of Rehabilitation Services, UMES
 Ms. Jhamyllia Rice, Department of Natural Sciences, UMES

UMD Undergraduate Students:
 Lydia Mazze
 Tobenna Blossom Mbonu
 Francis Oyebanjo
 Michael Ray
 Aliyah Silver
 Sarah Sudlow
 Yoseph Tewodros
 Amarachi Ude

UMD Graduate Students:
 Kiante Brantley
 Andrew Norman Shaw

UMBC Graduate Students:
 Hector Medina
 Shawnisha Hester
 Denise Williams
 Ashley Wayne
 Canessa Swanson
 Valencia Watson

UMES Undergraduate Students:
 Ms. Casmira Nelson
Judges' Schedule – Alphabetical Listing

CHAIR OF THE JUDGES’ COMMITTEE: Dr. Prince Attoh, ptrtoh@umes.edu

<table>
<thead>
<tr>
<th>JUDGE</th>
<th>SESSION</th>
<th>TIME</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ali, Mohammad</td>
<td>POSTER 1-5</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Chigbu, Paulinus</td>
<td>POSTER 1-5</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Tracy, Bell</td>
<td>POSTER 1-5</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Ayotunde, Patrice</td>
<td>POSTER 6-10</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Attoh, Prince</td>
<td>POSTER 6-10</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Johnson, Renise</td>
<td>POSTER 6-10</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Chase, Tyrone Dr</td>
<td>POSTER 11-15</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Ishaque, Ali</td>
<td>POSTER 11-15</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Lane, Michael</td>
<td>POSTER 11-15</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Cravens, Cynthia</td>
<td>POSTER 15-20</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Cooledge, Dean</td>
<td>POSTER 15-20</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Das, Kausik</td>
<td>POSTER 15-20</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Sexton, Maggie</td>
<td>POSTER 21-25</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Ejiogu, Kingsley</td>
<td>POSTER 21-25</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Ezeabikwa, Bernadette</td>
<td>POSTER 21-25</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Gong, Tao</td>
<td>POSTER 25-30</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Wade, Latasha</td>
<td>POSTER 25-30</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Henry, Xavier</td>
<td>POSTER 25-30</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Kharel, Madan</td>
<td>POSTER 30-35</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>May, Eric B.</td>
<td>POSTER 30-35</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Willie, Brown</td>
<td>POSTER 30-35</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>Mohamed, Ali</td>
<td>SESSION 1 - A</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Theater</td>
</tr>
<tr>
<td>Mohamed, Azah</td>
<td>SESSION 1 - A</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Theater</td>
</tr>
<tr>
<td>Nindo, Caleb</td>
<td>SESSION 1 - A</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Theater</td>
</tr>
<tr>
<td>Okulate Mobolaji</td>
<td>SESSION 1 - B</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Room 2149</td>
</tr>
<tr>
<td>Edje, Blessing</td>
<td>SESSION 1 - B</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Room 2149</td>
</tr>
<tr>
<td>Min, Byungrook</td>
<td>SESSION 1 - B</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Room 2149</td>
</tr>
<tr>
<td>Poole-Sykes, Kimberly</td>
<td>SESSION 1 - C</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Room 2147</td>
</tr>
<tr>
<td>Sauder, Deborah</td>
<td>SESSION 1 - C</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Room 2147</td>
</tr>
<tr>
<td>Pitula, Joseph</td>
<td>SESSION 1 - C</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Room 2147</td>
</tr>
<tr>
<td>Tsai, Lily</td>
<td>SESSION 1 - D</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Room 2146</td>
</tr>
<tr>
<td>Geleta, Nomsa</td>
<td>SESSION 1 - D</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Room 2146</td>
</tr>
<tr>
<td>Bowers, Cheryl</td>
<td>SESSION 1 - D</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Room 2146</td>
</tr>
<tr>
<td>Taabodi, Maryam</td>
<td>SESSION 1 - E</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Room 2144</td>
</tr>
<tr>
<td>Tejada, Fred</td>
<td>SESSION 1 - E</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Room 2144</td>
</tr>
<tr>
<td>Medina, Hector</td>
<td>SESSION 1 - E</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Room 2144</td>
</tr>
<tr>
<td>Shaw, Andrew</td>
<td>Creative Session</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Multipurpose Room</td>
</tr>
<tr>
<td>Brantley, Kiante</td>
<td>Creative Session</td>
<td>1:25 p.m.- 2:40 p.m.</td>
<td>SSC Multipurpose Room</td>
</tr>
</tbody>
</table>
CHAIR OF THE MODERATORS’ COMMITTEE: Dr. Victoria Volkis; vvvolkis@umes.edu

<table>
<thead>
<tr>
<th>Moderator</th>
<th>SESSION</th>
<th>TIME</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>POSTER Session</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>2</td>
<td>POSTER Session</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>3</td>
<td>POSTER Session</td>
<td>9:00 a.m.-10:30 a.m.</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>4</td>
<td>ORAL Session 1—A</td>
<td>1:25 PM — 2:40 PM</td>
<td>SSC Theater</td>
</tr>
<tr>
<td>5</td>
<td>ORAL Session 1 - A</td>
<td>1:25 PM — 2:40 PM</td>
<td>SSC Theater</td>
</tr>
<tr>
<td>6</td>
<td>ORAL Session 1 - B</td>
<td>1:25 PM — 2:40 PM</td>
<td>SSC Room 2149</td>
</tr>
<tr>
<td>7</td>
<td>ORAL Session 1 - B</td>
<td>1:25 PM — 2:40 PM</td>
<td>SSC Room 2149</td>
</tr>
<tr>
<td>8</td>
<td>ORAL Session 1 - C</td>
<td>1:25 PM — 2:40 PM</td>
<td>SSC Room 2147</td>
</tr>
<tr>
<td>9</td>
<td>ORAL Session 1 - C</td>
<td>1:25 PM — 2:40 PM</td>
<td>SSC Room 2147</td>
</tr>
<tr>
<td>10</td>
<td>ORAL Session 1 - D</td>
<td>1:25 PM — 2:40 PM</td>
<td>SSC Room 2146</td>
</tr>
<tr>
<td>11</td>
<td>ORAL Session 1 - D</td>
<td>1:25 PM — 2:40 PM</td>
<td>SSC Room 2146</td>
</tr>
<tr>
<td>12</td>
<td>ORAL Session 1 - E</td>
<td>1:25 PM — 2:40 PM</td>
<td>SSC Room 2144</td>
</tr>
<tr>
<td>13</td>
<td>ORAL Session 1 - E</td>
<td>1:25 PM — 2:40 PM</td>
<td>SSC Room 2144</td>
</tr>
<tr>
<td>14</td>
<td>ORAL Session 1 - F</td>
<td>1:25 PM — 2:40 PM</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>15</td>
<td>ORAL Session 1 - F</td>
<td>1:25 PM — 2:40 PM</td>
<td>SSC Ballroom</td>
</tr>
<tr>
<td>16</td>
<td>Alternate</td>
<td>1:25 PM — 2:40 PM</td>
<td>SSC Multipurpose Room</td>
</tr>
<tr>
<td></td>
<td>Alternate</td>
<td>1:25 PM — 2:40 PM</td>
<td>SSC Multipurpose Room</td>
</tr>
</tbody>
</table>
Ballroom

(Station Services Center First Floor-East Wing)

LUNCH

KEYNOTE SPEAKER

Reserved for President
VPs

Reserved for Deans Chairs

COFFEE

POSTER PRESENTATIONS

REGISTRATION TABLE

Reserved for
President

VPs

Reserved for
Deans Chairs

Program
University of Maryland Eastern Shore 2018 Graduate Education Week

Student Services Center First Floor Plan

NASA LAUNCH (SSC THEATER) 9:30 AM to 10:30 AM

Oral Presentation Group A (SSC THEATER) Session I 1:25 PM – 2:40 PM

Oral Presentation Group E (SSC Ballroom) Session I 1:25 PM – 2:40 PM

Student Services Center Second Floor Plan

Multipurpose Room
(Student Services Center Room 1140)

Hallway

Continental

Lounge

Breakfast

3MT Competition
Creative Presentations
Awards Ceremony
Oral Presentation Groups B and C
(Student Services Center Room 2149 and 2147)
Session I 1:25 PM – 2:40 PM

Group C (SSC Room 2147) Group B (SSC Room 2149)

Oral Presentation Groups D and E
(Student Services Center Rooms 2146 & 2144)
Session I 1:25 PM – 2:40 PM

Group E (SSC Room 2144) Group D (SSC Room 2146)
UMES CAMPUS MAP

Buildings on Map...

NOTE: Parking Lot Designations are indicated by Letters

UMES INFORMATION:

CAMPUS ADDRESS:

UMES
University Drive
Princess Anne, MD 21853

CAMPUS FASCIMILE:

410-651–7739
UMES Campus Map

The UMES campus includes over 47 buildings on 700-plus acres
See you next year
April 2019
http://www.umes.edu/Symposium2019

University of Maryland Eastern Shore
9th Annual Regional Research Symposium
http://www.umes.edu/Symposium2018

April 17, 2018

School of Graduate Studies
Engineering and Aviation Sciences Complex
Suite 3041-3046
Princess Anne, MD 21853